“|x|<3”是“x2-x-6<0”的(  )
分析:正確求解含絕對值的不等式是解決該問題的關(guān)鍵,解出不等式以后利用集合之間的關(guān)系判斷是什么條件.
解答:解:由“|x|<3”解出-3<x<3,
由“x2-x-6<0”解出-2<x<3,
故“x2-x-6<0”⇒“|x|<3”,
而反過來推不出,因此條件“|x|<3”是“x2-x-6<0”的必要非充分條件.
故選B.
點評:本題是不等式求解與充要條件判斷的交匯問題,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

15、給出下列四個結(jié)論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③函數(shù)f(x)=x-sinx(x∈R)有3個零點;
④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時,f′(x)>g′(x).
其中正確結(jié)論的序號是
①④
(填上所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廈門模擬)“2<x<3”是“x(x-5)<0”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•龍巖二模)已知f(x)、g(x)都是定義在R上的函數(shù),f'(x)g(x)+f(x)g'(x)<0,f(x)g(x)=ax,f(1)g(1)+f(-1)g(-1)=
5
2
.在區(qū)間[-3,0]上隨機取一個數(shù)x,f(x)g(x)的值介于4到8之間的概率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題p:x<-3是|x+1|>2的充分不必要條件,命題q:在△ABC中,如果sinA=cosB,那么△ABC為直角三角形.則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•普陀區(qū)一模)f(x)和g(x)都是定義在集合M上的函數(shù),對于任意的x∈M,都有f(g(x))=g(f(x))成立,稱函數(shù)f(x)與g(x)在M上互為“H函數(shù)”.
(1)若函數(shù)f(x)=ax+b,g(x)=mx+n,f(x)與g(x)互為“H函數(shù)”,證明:f(n)=g(b)
(2)若集合M=[-2,2],函數(shù)f(x)=x2,g(x)=cosx,判斷函數(shù)f(x)與g(x)在M上是否互為“H函數(shù)”,并說明理由.
(3)函數(shù)f(x)=ax(a>0且a≠1),g(x)=x+1在集合M上互為“H函數(shù)”,求a的取值范圍及集合M.

查看答案和解析>>

同步練習冊答案