5.已知函數(shù)y=f(x)在(0,2)上是增函數(shù),且y=f(x+2)是偶函數(shù),則f(1),f($\frac{5}{2}$),f($\frac{7}{2}$)的大小關(guān)系是( 。
A.f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$)B.f(1)<f($\frac{5}{2}$)<f($\frac{7}{2}$)C.f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1)D.f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$)

分析 根據(jù)函數(shù)的圖象的平移變化規(guī)律可得,可得把f(x+2)向右平移2個單位可得f(x)的圖象,進(jìn)而由偶函數(shù)的性質(zhì)可得f(x)圖象關(guān)于y軸對稱,則可知f(x)的圖象關(guān)于x=2對稱,從而可得f($\frac{5}{2}$)=f($\frac{3}{2}$),f($\frac{7}{2}$)=f($\frac{1}{2}$),結(jié)合f(x)在(0,2)單調(diào)遞增,可比較f(1),f($\frac{5}{2}$),f($\frac{7}{2}$)的大。

解答 解:根據(jù)題意,把f(x+2)向右平移2個單位可得f(x)的圖象,
而f(x+2)是偶函數(shù),其圖象關(guān)于y軸對稱,則f(x)的圖象關(guān)于x=2對稱,
∴f($\frac{5}{2}$)=f($\frac{3}{2}$),f($\frac{7}{2}$)=f($\frac{1}{2}$),結(jié)合f(x)在(0,2)單調(diào)遞增,$\frac{1}{2}$<1<$\frac{3}{2}$,
∴f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$),
故選:A.

點評 本題考查函數(shù)圖象的變化以及偶函數(shù)性質(zhì)的應(yīng)用,由函數(shù)圖象的平移變化推出f(x)的圖象關(guān)于x=2對稱是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在數(shù)列{an}中,a1=1,an+1=1-$\frac{1}{4{a}_{n}}$,bn=$\frac{1}{2{a}_{n}-{1}_{\;}}$,其中n∈N*
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)設(shè)cn=bn+1•($\frac{1}{3}$)${\;}^{_{n}}$,數(shù)列{cn}的前n項和為Tn,求Tn;
(3)證明:1+$\frac{1}{\sqrt{_{2}}}$+$\frac{1}{\sqrt{_{3}}}$+…+$\frac{1}{\sqrt{_{n}}}$≤2$\sqrt{n}$-1(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}首項是1公差不為0,Sn為的前n和,且S22=S1•S4
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a,b,c為三條互不相同的直線,α,β,γ為是三個互不相同的平面,則下列選項中正確的是( 。
A.若a⊥b,a⊥c,則b∥cB.若a⊥α,b⊥β,a∥b,則α∥β
C.若α⊥β,α⊥γ,則β∥γD.若a∥α,b∥β,a⊥b,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)z=$\frac{1-i}{1+i}$,則z的虛部是(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某市居民用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過15噸時,每噸2元,當(dāng)用水超過15噸時,超過部分每噸3元.某月甲、乙兩戶共交水費(fèi)y元,已知甲、乙兩用戶該月用水量分別為5x,3x(噸).
(1)求y關(guān)于x的函數(shù)表達(dá)式;
(2)若甲、乙兩戶該月共交水費(fèi)114元,分別求出甲、乙兩戶該月的用水量和所交水費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知圓C:(x-a)2+(y-a)2=2a2(a>0)及其外一點A(0,2).若圓C上存在點T滿足∠CAT=$\frac{π}{4}$,則實數(shù)a的取值范圍是( 。
A.(-∞,1)B.$[\sqrt{3}-1,1)$C.$[\sqrt{3}-1,1]$D.$[\sqrt{3}-1,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若f(x)=x2-4x+4+m的定義域值域都是[2,n],則mn=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.計算($\frac{27}{8}$)${\;}^{\frac{2}{3}}}$=$\frac{9}{4}$.

查看答案和解析>>

同步練習(xí)冊答案