【題目】在平面直角坐標(biāo)系xOy中,圓C:
(1)若圓C與x軸相切,求實數(shù)a的值;
(2)若M,N為圓C上不同的兩點,過點M,N分別作圓C的切線,若與相交于點P,圓C上異于M,N另有一點Q,滿足,若直線:上存在唯一的一個點T,使得,求實數(shù)a的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2,AB=1.
(Ⅰ)求四棱錐P﹣ABCD的體積V;
(Ⅱ)若F為PC的中點,求證:平面PAC⊥平面AEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)滿足,現(xiàn)給出下列命題:①函數(shù)是以2為周期的周期函數(shù);②函數(shù)是以4為周期的周期函數(shù);③函數(shù)為奇函數(shù);④函數(shù)為偶函數(shù),則其中真命題的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】P是圓上的動點,P點在x軸上的射影是D,點M滿足.
(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;
(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年9月23日,在省市舉辦的2019年中國農(nóng)民豐收節(jié)“新電商與農(nóng)業(yè)科技創(chuàng)新”論壇上,來自政府相關(guān)部門的領(lǐng)導(dǎo)及11所中國高校的專家學(xué)者以“農(nóng)業(yè)科技創(chuàng)新與鄉(xiāng)村振興”、“新農(nóng)人與脫貧攻堅”為核心議題各抒己見,農(nóng)產(chǎn)品方面的科技創(chuàng)新越來越成為21世紀(jì)大國崛起的一項重大突破.科學(xué)家對某農(nóng)產(chǎn)品每日平均增重量(單位:)與每日營養(yǎng)液注射量(單位:)之間的關(guān)系統(tǒng)計出表1一組數(shù)據(jù):
表1
(單位:) | 1 | 2 | 3 | 4 | 5 |
(單位:) | 2 | 3.5 | 5 | 6.6 | 8.4 |
(1)根據(jù)表1和表2的相關(guān)統(tǒng)計值求關(guān)于的線性回歸方程;
(2)計算擬合指數(shù)的值,并說明線性回歸模型的擬合效果(的值在.98以上說明擬合程度好);
(3)若某日該農(nóng)產(chǎn)品的營養(yǎng)液注釋量為,預(yù)測該日這種農(nóng)產(chǎn)品的平均增長重量(結(jié)果精確到0.1).
附:①
表2
92.4 | 55 | 25 | 0.04 |
②對于一組數(shù)據(jù),,…,,其回歸線的斜率和截距的最小二乘估計分別為:,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com