設(shè)二次函數(shù)f(x)=mx2+nx,函數(shù)g(x)=ax3+bx-3(x>0),且有f'(0)=0,f′(-1)=-2,f(1)=g(1),f′(1)=g′(1).
(1)求函數(shù)f(x),g(x)的解析式;
(2)是否存在實(shí)數(shù)k和p,使得f(x)≥kx+p和g(x)≤kx+p成立,若存在,求出k和p的值;若不存在,說明理由.
【答案】分析:(Ⅰ)先求導(dǎo)函數(shù),利用f'(0)=n=0,f'(-1)=-2m+n=-2m=-2,可求f(x)的解析式;根據(jù)f(1)=g(1),f'(1)=g'(1),可求g(x)的解析式;
(Ⅱ)先確定f(x)與g(x)有且僅有一個(gè)交點(diǎn)為(1,1),f(x)在點(diǎn)(1,1)處的切線為y=2x-1,再證明g(x)≤2x-1即可.
解答:解:(Ⅰ)∵f'(x)=2mx+n,g'(x)=3ax2+b,∴f'(0)=n=0,f'(-1)=-2m+n=-2m=-2,即m=1,n=0,
∴f(x)=x2. (2分)
∵f(1)=g(1),∴1=a+b-3①.
∵f'(1)=g'(1),∴2=3a+b②,
由①②解得a=-1,b=5,∴g(x)=-x3+5x-3(x>0). (4分)
(Ⅱ)令f(x)=g(x),可得x2=-x3+5x-3(x>0).
(法一)x3+x2-5x+3=0,(x3-x)+(x2-4x+3)=0,∴x(x+1)(x-1)+(x-1)(x-3)=0,
∴(x-1)(x2+2x-3)=0,∴(x-1)2(x+3)=0,∵x>0,∴x=1,
即f(x)與g(x)有且僅有一個(gè)交點(diǎn)為(1,1),f(x)在點(diǎn)(1,1)處的切線為y=2x-1. (8分)
(法二)設(shè)h(x)=x3+x2-5x+3(x>0),h'(x)=3x2+2x-5=(x-1)(3x+5)(x>0),
令h'(x)=0,解得x=1,且x∈(0,1)時(shí),h'(x)<0,h(x)單調(diào)遞減,x∈(1,+∞)時(shí),h'(x)>0,h(x)單調(diào)遞增,∴x∈(0,+∞)時(shí),h(x)≥h(1)=0.
所以,f(x)與g(x)有且僅有一個(gè)交點(diǎn)為(1,1).f(x)在點(diǎn)(1,1)處的切線為y=2x-1. (8分)
下面證明g(x)≤2x-1.
設(shè)p(x)=2x-1-g(x)=x3-3x+2(x>0),
(法一)x3-3x+2=x3-x-2x+2=x(x+1)(x-1)-2(x-1)=(x-1)(x2+x-2)=(x-1)2(x+2)
∵x>0,∴p(x)=x3-3x+2≥0,即g(x)≤2x-1. (11分)
(法二)p'(x)=3x2-3=3(x+1)(x-1),令p'(x)=0,解得x=1.
且x∈(0,1)時(shí),p'(x)<0,p(x)單調(diào)遞減,x∈(1,+∞)時(shí),p'(x)>0,p(x)單調(diào)遞增,
∴x∈(0,+∞)時(shí),p(x)≥p(1)=0,即g(x)≤2x-1. (11分)
綜上,k=2,p=-1(12分)
點(diǎn)評:本題考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的解析式,考查曲線的切線,考查函數(shù)的單調(diào)性,綜合性強(qiáng),有難度.