【題目】綜合題。
(1)利用“五點(diǎn)法”畫出函數(shù) 內(nèi)的簡圖

x

x+

y


(2)若對(duì)任意x∈[0,2π],都有f(x)﹣3<m<f(x)+3恒成立,求m的取值范圍.

【答案】
(1)解:根據(jù)題意,函數(shù) 內(nèi)的列表如下:

x

0

π

y

0

1

0

﹣1

0

在平面直角坐標(biāo)系內(nèi)可得圖象如下:


(2)解:通過圖象可知:當(dāng)x∈[0,2π]時(shí),函f(x)值域?yàn)? ,

要使f(x)﹣3<m<f(x)+3恒成立,

即:

解得: ,

∴m的取值范圍是


【解析】(1)根據(jù)列表、描點(diǎn)、連線的基本步驟,畫出函數(shù)在一個(gè)周期在 的大致圖象即可.(2)根據(jù)x∈[0,2π],求解f(x)的值域,要使f(x)﹣3<m<f(x)+3恒成立,轉(zhuǎn)化為最小和最大值問題.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象的相關(guān)知識(shí),掌握描點(diǎn)法及其特例—五點(diǎn)作圖法(正、余弦曲線),三點(diǎn)二線作圖法(正、余切曲線).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|﹣1<x<1},B={x|2≤4x≤8},C={x|a﹣4<x≤2a﹣7}.
(1)求(UA)∩B;
(2)若A∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)镽的偶函數(shù)f(x)滿足對(duì)x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列.Sn為其前n項(xiàng)和,且滿足an2=S2n1(n∈N*),bn=an2+λan , 若{bn}為遞增數(shù)列,則實(shí)數(shù)λ的范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的函數(shù)

)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程.

)設(shè),討論函數(shù)的單調(diào)區(qū)間.

)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:ax﹣y+1=0與x軸,y軸分別交于點(diǎn)A,B.
(1)若a>0,點(diǎn)M(1,﹣1),點(diǎn)N(1,4),且以MN為直徑的圓過點(diǎn)A,求以AN為直徑的圓的方程;
(2)以線段AB為邊在第一象限作等邊三角形ABC,若a=﹣ ,且點(diǎn)P(m, )(m>0)滿足△ABC與△ABP的面積相等,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有一批貨物由海上從甲地運(yùn)往乙地,已知輪船的最大航行速度為60海里/小時(shí),甲地至乙地之間的海上航行距離為600海里,每小時(shí)的運(yùn)輸成本由燃料費(fèi)和其它費(fèi)用組成,輪船每小時(shí)的燃料費(fèi)與輪船速度的平方成正比,比例系數(shù)為05,其它費(fèi)用為每小時(shí)1250元.

1)請(qǐng)把全程運(yùn)輸成本(元)表示為速度(海里/小時(shí))的函數(shù),并指明定義域;

2)為使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,函數(shù)的最大值為.

(1)求的大;

(2)將函數(shù)的圖象向左平移個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,得到函數(shù)的圖象,作出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos2x+2 sinxcosx﹣sin2x.
(1)求f(x)的最小正周期和值域;
(2)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若 且a2=bc,試判斷△ABC的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案