(2007
北京宣武模擬)某先生居住在城鎮(zhèn)的A處,準(zhǔn)備開車到單位B上班.若該地各路段發(fā)生堵車事件都是獨立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率如圖所示(例如A→C→D算作兩個路段:路段AC發(fā)生堵車事件的概率為,路段CD發(fā)生堵車事件的概率為.)(1)
請你為其選擇一條由A到B的路線,使得途中發(fā)生堵車事件的概率最;(2)
若記路線A→C→F→B中遇到堵車次數(shù)為隨機變量ξ,求ξ的數(shù)學(xué)期望Eξ.科目:高中數(shù)學(xué) 來源: 題型:022
(2007
北京宣武模擬)已知分別是雙曲線的左、右焦點,P為雙曲線左支上任意一點,若的最小值為8a,則該雙曲線離心率e的取值范圍是________.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
(2007
北京宣武模擬)已知函數(shù)f(x)=[x[x]](xR),其中[x]表示不超過x的最大整數(shù).如
[-2.1]=-3,[-3]=-3,[2.5]=2.(1)
判斷f(x)的奇偶性;(2)
若x[-2,3],求f(x)的值域;(3)
若,f(x)的值域為,現(xiàn)將中的元素的個數(shù)記為,試求與的關(guān)系,并進一步求出的表達式.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
(2007
北京宣武模擬)如下圖,在四棱錐P-ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PA⊥底面ABCD,PD與底面成30°角.(1)
若AE⊥PD,E為垂足,求證:BE⊥PD;(2)
在(1)的條件下,求異面直線AE與CD所成角的余弦值;(3)
求平面PAB與平面PCD所成的二面角的正切值.查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com