當(dāng)x>0時(shí),下列函數(shù)中最小值為2的是( 。
A、y=x+
1
x+1
+1
B、y=x2-2x+3
C、y=
x2+7x+10
x+1
D、y=lnx+
1
lnx
考點(diǎn):基本不等式
專(zhuān)題:不等式的解法及應(yīng)用
分析:A.由x>0,利用基本不等式的性質(zhì)可得y=x+1+
1
x+1
≥2
(x+1)•
1
x+1
=2,而等號(hào)不成立,因此不正確;
B.y=(x-1)2+2,當(dāng)x=1時(shí),y取得最小值2,正確;
C.y=
x2+x+6(x+1)+4
x+1
=x+1+
4
x+1
+5≥2
(x+1)•
4
x+1
+5=9,因此最小值為9.
D.當(dāng)0<x<1時(shí),lnx<0,因此最小值不是2.
解答: 解:A.∵x>0,∴y=x+1+
1
x+1
≥2
(x+1)•
1
x+1
=2,而等號(hào)不成立,因此y>2,故最小值不是2.
B.y=(x-1)2+2,當(dāng)x=1時(shí),y取得最小值2,正確;
C.y=
x2+x+6(x+1)+4
x+1
=x+1+
4
x+1
+5≥2
(x+1)•
4
x+1
+5=9,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),因此最小值為9,不是2.
D.當(dāng)0<x<1時(shí),lnx<0,因此最小值不是2.
綜上可得:只有B正確.
故選:B.
點(diǎn)評(píng):本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理數(shù))使函數(shù)f(x)=2sin(2x+θ+
π
3
)是奇函數(shù),且在[0,
π
4
]
上是減函數(shù)的θ的一個(gè)值是(  )
A、
π
3
B、
3
C、
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:關(guān)于x的方程x2-x+a=0有實(shí)數(shù)根;命題q:對(duì)任意的實(shí)數(shù)x都有x2+ax+a>0恒成立; 如果p且q為假,p或q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知扇形的圓心角為
π
6
,弧長(zhǎng)為
3
,則該扇形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校在“11•9”舉行老師、學(xué)生消防知識(shí)比賽,報(bào)名的學(xué)生和教師的人數(shù)之比為6:1,學(xué)校決定按分層抽樣的方法從報(bào)名的師生中抽取35人組隊(duì)進(jìn)行比賽,已知教師甲被抽到的概率為
1
10
,則報(bào)名的學(xué)生人數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定集合An={1,2,3,…,n}(n∈N+),映射fAn→An滿(mǎn)足:①當(dāng)i,j∈An,i≠j時(shí),f(i)≠f(j);②任取m∈An,若m≥2,則有m∈{f(1),f(2),…,f(m)}.則稱(chēng)映射fAn→An是一個(gè)“優(yōu)映射”.例如:用表1表示的映射fA3→A3是一個(gè)“優(yōu)映射”.
表1                          
i123
 f(i)231
表2
i1234
f(i)3
(1)已知表2表示的映射fA4→A4是一個(gè)“優(yōu)映射”,請(qǐng)把表2補(bǔ)充完整.
(2)若映射fA6→A6是“優(yōu)映射”,且方程f(i)=i的解恰有3個(gè),則這樣的“優(yōu)映射”的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)xtan
π
3
+y+2=0的傾斜角α是( 。
A、
π
3
B、
π
6
C、
3
D、-
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=(
1
3
)
1
2
,b=(
1
3
)
1
3
,c=log
1
2
1
3
,則a,b,c之間的大小關(guān)系為( 。
A、a>b>c
B、c>a>b
C、a>c>b
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A′B′C′D′中,求證:
(1)平面ACC′A′⊥平面A′BD
(2)AC′⊥平面A′BD.

查看答案和解析>>

同步練習(xí)冊(cè)答案