已知集合,。若存在實(shí)數(shù),使得成立,稱(chēng)點(diǎn)為 “£”點(diǎn),則“£”點(diǎn)在平面區(qū)域內(nèi)的個(gè)數(shù)是(  ) 

  A. 0   B. 1   C. 2   D. 無(wú)數(shù)個(gè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
2x-a
x2+2
(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=
1
x
的兩個(gè)非零實(shí)根為x1、x2.試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
1|2x-b|
是偶函數(shù),a為實(shí)常數(shù).
(1)求b的值;
(2)當(dāng)a=1時(shí),是否存在m,n(n>m>0)使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說(shuō)明理由;
(3)若在函數(shù)定義域內(nèi)總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
1|2x-b|
是偶函數(shù),a為實(shí)常數(shù).
(1)求b的值;
(2)當(dāng)a=1時(shí),是否存在m,n(n>m>o)使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
2x-a
x2+2
(x∈R)
在區(qū)間[-1,1]上是增函數(shù)
( I)求實(shí)數(shù)a的取值范圍;
( II)記實(shí)數(shù)a的取值范圍為集合A,且設(shè)關(guān)于x的方程f(x)=
1
x
的兩個(gè)非零實(shí)根為x1,x2
①求|x1-x2|的最大值;
②試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1>|x1-x2|對(duì)?a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•廣東模擬)已知函數(shù)f(x)=4x+ax2-
2
3
x3(x∈R)

(1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[-1,1]上單調(diào)遞增,求實(shí)數(shù)a的取值組成的集合A;
(3)設(shè)關(guān)于x的方程f(x)=2x+
1
3
x3
的兩個(gè)非零實(shí)根為x1,x2,試問(wèn)是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案