【題目】設(shè):實(shí)數(shù)滿足不等式, :函數(shù)無(wú)極值點(diǎn).

1)若為假命題,為真命題,求實(shí)數(shù)的取值范圍;

2)已知為真命題,并記為,且,若的必要不充分條件,求正整數(shù)的值.

【答案】(1;(2.

【解析】試題分析:由,得;函數(shù)無(wú)極值點(diǎn), 恒成立,得,解得.(1為假命題,為真命題,則只有一個(gè)命題是真命題,分成假和真兩類(lèi)來(lái)求的取值范圍;(2為真命題,兩個(gè)都是真命題,所以.將因式分解得,解得, 的必要不充分條件得,解得,所以

試題解析:

,得,即................1

函數(shù)無(wú)極值點(diǎn),恒成立,得,解得

..................................3

1為假命題,為真命題,只有一個(gè)命題是真命題.

為真命題, 為假命題,則;.....................5

為真命題, 為假命題,則..............6

于是,實(shí)數(shù)的取值范圍為.....................7

2為真命題,..............8

,

,

,...................10

,從而,

的必要不充分條件,即的充分不必要條件,

,解得,..................12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x+4)+f(x-1)=x2-2x,其中f(x)是二次函數(shù),求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的反函數(shù)為,

(1)求的解析式,并指出的定義域;

(2)判斷的奇偶性,并說(shuō)明理由;

(3)設(shè),解關(guān)于的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:

年 份

2008

2009

2010

2011

2012

2013

2014

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.7

3.6

3.3

4.6

5.4

5.7

6.2

對(duì)變量ty進(jìn)行相關(guān)性檢驗(yàn),得知ty之間具有線性相關(guān)關(guān)系.

(1)求y關(guān)于t的線性回歸方程;

(2)預(yù)測(cè)該地區(qū)2017年的居民人均純收入.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二分法是求方程近似解的一種方法,其原理是“一分為二、無(wú)限逼近”.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的值( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓的一組等分點(diǎn)分別涂上紅色或藍(lán)色,從任意一點(diǎn)開(kāi)始,按逆時(shí)針?lè)较蛞来斡涗?/span>個(gè)點(diǎn)的顏色,稱(chēng)為該圓的一個(gè)階段序,當(dāng)且僅當(dāng)兩個(gè)階色序?qū)?yīng)位置上的顏色至少有一個(gè)不相同時(shí),稱(chēng)為不同的階色序.若某圓的任意兩個(gè)階段序均不相同,則稱(chēng)該圓為階魅力圓.3階魅力圓中最多可有的等分點(diǎn)個(gè)數(shù)為

A.4 B.6

C. 8 D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況統(tǒng)計(jì)如下表:(單位:人)

立體幾何題

代數(shù)題

總計(jì)

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計(jì)

30

20

50

(1)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?

(2)經(jīng)統(tǒng)計(jì)得,選擇做立體幾何題的學(xué)生正答率為,且答對(duì)的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯(cuò)的學(xué)生中任意抽取兩人對(duì)他們的答題情況進(jìn)行研究,求恰好抽到男女生各一人的概率.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的二次函數(shù)f(x)=x2+(2t-1)x+1-2t.

(1)求證:對(duì)于任意t∈R,方程f(x)=1必有實(shí)數(shù)根;

(2)若<t<,求證:方程f(x)=0在區(qū)間(-1,0)及內(nèi)各有一個(gè)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,集合A={x|-5<x<5},B={x|0≤x<7},:(1)AB;(2)AB;(3)A∪(UB);(4)B∩(UA);(5)(UA)∩(UB).

查看答案和解析>>

同步練習(xí)冊(cè)答案