已知函數(shù),若函數(shù)處的切線方程為,
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間。

(1)
(2)的單調(diào)增區(qū)間為;減區(qū)間為(

解析試題分析:(1)根據(jù)題意,由于函數(shù),,那么函數(shù)處的切線方程為,可知
(2)由上可知,,那么可知,當(dāng)y’>0,得到函數(shù)的增區(qū)間為,當(dāng)y’<0時(shí),得到的函數(shù)的減區(qū)間為
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)在研究函數(shù)單調(diào)性中的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) .
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若且對(duì)任意恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù).(的圖象連續(xù)不斷)
(1) 求的單調(diào)區(qū)間;
(2) 當(dāng)時(shí),證明:存在,使;
(3) 若存在屬于區(qū)間,且,使,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),函數(shù)的圖像與函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程有兩個(gè)不同的正數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線  在點(diǎn)  處的切線  平行直線,且點(diǎn)在第三象限.
(Ⅰ)求的坐標(biāo);
(Ⅱ)若直線  , 且  也過切點(diǎn) ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/68/4/xgkwy1.png" style="vertical-align:middle;" />,求的值;
(Ⅱ)若函數(shù)的函數(shù)值均為非負(fù)數(shù),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),(為實(shí)常數(shù))
(1)若,將寫出分段函數(shù)的形式,并畫出簡(jiǎn)圖,指出其單調(diào)遞減區(qū)間;
(2)設(shè)在區(qū)間上的最小值為,求的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求函數(shù)在下列定義域內(nèi)的值域。
(1)函數(shù)y=f(x)的值域
(2)(其中)函數(shù)y=f(x)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在上奇函數(shù)與偶函數(shù),對(duì)任意滿足+a為實(shí)數(shù)
(1)求奇函數(shù)和偶函數(shù)的表達(dá)式
(2)若a>2, 求函數(shù)在區(qū)間上的最值

查看答案和解析>>

同步練習(xí)冊(cè)答案