在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,直線被圓ρ=2sinθ截得的弦的長是   
【答案】分析:把極坐標(biāo)方程化為直角坐標(biāo)方程,求出圓心和半徑,利用點到直線的距離公式求得圓心到直線的距離d,再由弦長公式求得結(jié)果.
解答:解:直線 即 y=x,圓ρ=2sinθ化為直角坐標(biāo)方程為 x2+y2=2y,即 x2+(y-1)2=1,
表示以(0,1)為圓心,半徑等于1的圓.
圓心到直線的距離d==,故弦長為2=,
故答案為
點評:本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點到直線的距離公式、弦長公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系Ox中,已知曲線C1:ρcos(θ+
π
4
)
=
2
2
,C2:ρ=1(0≤θ≤π),C3
1
ρ2
=
cos2θ
3
+sin2θ
,設(shè)C1與C2交于點M
(I)求點M的極坐標(biāo);
(II)若動直線l過點M,且與曲線C3交于兩個不同的點A,B,求
|MA|•|MB|
|AB|
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)如圖,∠PAQ是直角,圓O與AP相切于點T,與AQ相交于兩點B,C.求證:BT平分∠OBA
(2)若點A(2,2)在矩陣M=
.
cosα-sinα
sinαcosα
.
對應(yīng)變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣;
(3)在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動點,B為直線ρcosθ+ρsinθ-7=0上的動點,求AB的最小值;
(4)已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

坐標(biāo)系與參數(shù)方程,在極坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(3,
π3
)
,半徑為3,點Q在圓周上運動,
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)直角坐標(biāo)系的原點與極點O重合,x軸非負(fù)半軸與極軸重合,M為OQ中點,求點M的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題(請考生在三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分).
(A)(坐標(biāo)系與參數(shù)方程) 在極坐標(biāo)系中,過圓ρ=6cosθ的圓心,且垂直于極軸的直線的極坐標(biāo)方程為
ρcosθ=3
ρcosθ=3

(B)(不等式選講)已知關(guān)于x的不等式|x+a|+|x-1|+a<2011(a是常數(shù))的解是非空集合,則a的取值范圍
a<1005
a<1005

(C)(幾何證明選講)如圖:若PA=PB,∠APB=2∠ACB,AC與PB交于點D,且PB=4,PD=3,則AD•DC=
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•寶山區(qū)二模)在極坐標(biāo)系中,點(m,
π
6
)(m>0)到直線ρcos(θ-
π
6
)
=3的距離為2,則m=
1或5
1或5

查看答案和解析>>

同步練習(xí)冊答案