已知橢圓經(jīng)過點A(2,1),離心率為,過點B(3,0)的直線l與橢圓交于不同的兩點M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍.
【答案】分析:(Ⅰ)根據(jù)離心率為,可設,則,利用經(jīng)過點A(2,1)可得,從而可求橢圓方程;
(Ⅱ)由題意可知直線l的斜率存在,設直線l的方程為y=k(x-3),與橢圓方程聯(lián)立,利用韋達定理及用坐標表示向量,即可確定的取值范圍.
解答:解:(Ⅰ)由離心率為,可設,則
因為經(jīng)過點A(2,1)
所以,解得,所以a2=6,b2=3
所以橢圓方程為…(4分)
(Ⅱ)由題意可知直線l的斜率存在,設直線l的方程為y=k(x-3),
直線l與橢圓的交點坐標為M(x1,y1),N(x2,y2)…(5分)
,消元整理得:(1+2k2)x2-12k2x+18k2-6=0…(7分)
△=(12k22-4(1+2k2)(18k2-6)>0得 0≤k2<1…(8分)
,…(9分)
=(x1-3,y1)•(x2-3,y2)=(x1-3)(x2-3)+y1y2…(10分)
=(1+k2)[x1x2-3(x1+x2)+9]==…(11分)
因為0≤k2<1,所以
所以的取值范圍是(2,3].…(14分)
點評:本題考查橢圓的標準方程與幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查向量知識的運用,解題的關(guān)鍵是直線與橢圓方程的聯(lián)立,利用韋達定理進行解題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:北京模擬題 題型:解答題

已知橢圓經(jīng)過點A(2,1),離心率為,過點B(3,0)的直線l與橢圓交于不同的兩點M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省宜春市高二(上)期末數(shù)學試卷(解析版) 題型:解答題

已知橢圓經(jīng)過點A(2,1),離心率為.過點B(3,0)的直線l與橢圓C交于不同的兩點M,N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)設直線AM和直線AN的斜率分別為kAM和kAN,求證:kAM+kAN為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年北京市門頭溝區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

已知橢圓經(jīng)過點A(2,1),離心率為,過點B(3,0)的直線l與橢圓交于不同的兩點M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年北京市高考數(shù)學仿真押題試題2(理科)(解析版) 題型:解答題

已知橢圓經(jīng)過點A(2,1),離心率為.過點B(3,0)的直線l與橢圓C交于不同的兩點M,N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)設直線AM和直線AN的斜率分別為kAM和kAN,求證:kAM+kAN為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年北京市朝陽區(qū)高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知橢圓經(jīng)過點A(2,1),離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(3,0)的直線l與橢圓C交于不同的兩點M,N,設直線AM和直線AN的斜率分別為kAM和kAN,求證:kAM+kAN為定值.

查看答案和解析>>

同步練習冊答案