【題目】已知橢圓()的左右焦點分別為,左右頂點分別為,過右焦點且垂直于長軸的直線交橢圓于兩點,,的周長為.過點作直線交橢圓于第一象限的點,直線交橢圓于另一點,直線與直線交于點;
(1)求橢圓的標準方程;
(2)若的面積為,求直線的方程;
(3)證明:點在定直線上.
【答案】(1)(2)(3)見解析
【解析】
(1)根據(jù)橢圓的性質(zhì),即可由此即可求出橢圓的方程;
(2)分直線MN的斜率存在和不存在兩種情況,利用韋達定理求出弦長,然后再根據(jù)點到直線的距離公式求出高的長度,再根據(jù)的面積為,即可求出結(jié)果;
(3)設(shè):,與橢圓聯(lián)立,可得,設(shè):,同理可得 ,可得的方程為:,又直線方程過,將代入直線方程,由此可得,因為與交于點,所以可得,由此即可求出結(jié)果.
(1),解得:;
所以橢圓方程為:.
(2)設(shè),①當直線MN斜率存在時:設(shè)MN方程為,聯(lián)立得:,
,;
;
到MN直線的距離為,
;
當時,MN直線方程過直線MN與橢圓的交點不在第一象限(舍);
所以MN方程為.
②當直線MN斜率不存在時,(舍).
綜上:直線MN方程為:
(3)設(shè):,與橢圓聯(lián)立:,
同理設(shè):,可得
所以的方程為:以及方程過,將坐標代入可得:, .
又因為與交于P點,即,,將代入得,所以點P在定直線上 .
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】點A、B分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.
(1)求點P的坐標;
(2)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新高考方案的實施,學生對物理學科的選擇成了焦點話題. 某學校為了了解該校學生的物理成績,從,兩個班分別隨機調(diào)查了40名學生,根據(jù)學生的某次物理成績,得到班學生物理成績的頻率分布直方圖和班學生物理成績的頻數(shù)分布條形圖.
(Ⅰ)估計班學生物理成績的眾數(shù)、中位數(shù)(精確到)、平均數(shù)(各組區(qū)間內(nèi)的數(shù)據(jù)以該組區(qū)間的中點值為代表);
(Ⅱ)填寫列聯(lián)表,并判斷是否有的把握認為物理成績與班級有關(guān)?
物理成績的學生數(shù) | 物理成績的學生數(shù) | 合計 | |
班 | |||
班 | |||
合計 |
附:列聯(lián)表隨機變量;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設(shè)橢圓的左、右焦點分別為,點在橢圓上,的面積為.
(1)求橢圓的標準方程;
(2)設(shè)圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, 若x軸是的角平分線, 證明直線l過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com