已知橢圓>b>0)的離心率為,且過點(diǎn)
(I)求橢圓的方程;
(II)已知點(diǎn)C(m,0)是線段OF上一個(gè)動(dòng)點(diǎn)(O為原點(diǎn),F(xiàn)為橢圓的右焦點(diǎn)),是否存在過點(diǎn)F且與x軸不垂直的直線l與橢圓交于A,B兩點(diǎn),使|AC|=|BC|,并說明理由.
【答案】分析:(I)根據(jù)橢圓>b>0)的離心率為,且過點(diǎn),建立方程組,即可求得橢圓的方程;
(II)設(shè)過點(diǎn)F且與x軸不垂直的直線l的方程為:y=k(x-2)代入橢圓方程,消去y可得一元二次方程,求出AB垂直平分線的方程,將C的坐標(biāo)代入,即可求得結(jié)論.
解答:解:(I)由題意,,∴,∴橢圓的方程為;
(II)設(shè)過點(diǎn)F且與x軸不垂直的直線l的方程為:y=k(x-2)代入橢圓方程,消去y可得
(1+2k2)x2-8k2x+8k2-2=0,則△=16k4-4(1+2k2)(8k2-2)=-16k2+8>0,∴k2
設(shè)A(x1,y1),B(x2,y2),則x1+x2=,y1+y2=-
∴AB的中點(diǎn)的坐標(biāo)為(
∴AB的垂直平分線的方程為y+=-(x-
將點(diǎn)C(m,0)代入可得0+=-(m-
∴m=
∵0<m<2
恒成立
∴存在過點(diǎn)F且與x軸不垂直的直線l與橢圓交于A,B兩點(diǎn),使|AC|=|BC|.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,確定橢圓的方程,求出AB的垂直平分線的方程是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省臨沂三中高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓>b>0)的離心率為,且過點(diǎn)
(I)求橢圓的方程;
(II)已知點(diǎn)C(m,0)是線段OF上一個(gè)動(dòng)點(diǎn)(O為原點(diǎn),F(xiàn)為橢圓的右焦點(diǎn)),是否存在過點(diǎn)F且與x軸不垂直的直線l與橢圓交于A,B兩點(diǎn),使|AC|=|BC|,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省臨沂三中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓>b>0)的離心率為,且過點(diǎn)
(I)求橢圓的方程;
(II)已知點(diǎn)C(m,0)是線段OF上一個(gè)動(dòng)點(diǎn)(O為原點(diǎn),F(xiàn)為橢圓的右焦點(diǎn)),是否存在過點(diǎn)F且與x軸不垂直的直線l與橢圓交于A,B兩點(diǎn),使|AC|=|BC|,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省泰安市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓>b>0)的離心率為,且過點(diǎn)
(I)求橢圓的方程;
(II)已知點(diǎn)C(m,0)是線段OF上一個(gè)動(dòng)點(diǎn)(O為原點(diǎn),F(xiàn)為橢圓的右焦點(diǎn)),是否存在過點(diǎn)F且與x軸不垂直的直線l與橢圓交于A,B兩點(diǎn),使|AC|=|BC|,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省泰安市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓>b>0)的離心率為,且過點(diǎn)
(I)求橢圓的方程;
(II)已知點(diǎn)C(m,0)是線段OF上一個(gè)動(dòng)點(diǎn)(O為原點(diǎn),F(xiàn)為橢圓的右焦點(diǎn)),是否存在過點(diǎn)F且與x軸不垂直的直線l與橢圓交于A,B兩點(diǎn),使|AC|=|BC|,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案