11.若集合A={x|x2-2x<0,x∈R},集合B={x||x|>1,x∈R},則A∩B=(1,2).

分析 解一元二次不等式化簡集合A,解絕對值不等式化簡集合B,再由交集的運(yùn)算性質(zhì)計(jì)算得答案.

解答 解:集合A={x|x2-2x<0,x∈R}={x|0<x<2},B={x||x|>1,x∈R}={x|x<-1或x>1},
則A∩B={x|0<x<2}∩{x|x<-1或x>1}=(1,2).
故答案為:(1,2).

點(diǎn)評 本題考查了交集的運(yùn)算性質(zhì),考查了一元二次不等式和絕對值不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.變量x、y具有線性相關(guān)關(guān)系,當(dāng)x的取值為8,12,14,16時(shí),通過觀測知y的值分別為5,8,9,11,若在實(shí)際問題中,y的預(yù)報(bào)值最大是10,則x的最大取值不能超過( 。
A.16B.15C.17D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x),g(x)分別由如表給出
x123
f(x)131
x123
g(x)321
滿足不等式f[g(x)]>g[f(x)]解集是{2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線方程為y=$\frac{4}{3}$x,則雙曲線的離心率為( 。
A.$\frac{5}{3}$B.$\frac{5}{3}$ 或$\frac{5}{4}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.計(jì)算:
(1)$\frac{(-1+i)(2+i)}{i^3}$;             
(2)$\frac{{{{(1+2i)}^2}}}{3-4i}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某校為了解本校高三學(xué)生學(xué)習(xí)的心理狀態(tài),采用系統(tǒng)抽樣方法從1200人中抽取40人參加某種測試,為此將他們隨機(jī)編號(hào)為1,2,…,1200,分組后在第一組采用簡單隨機(jī)抽樣的方法抽到的號(hào)碼為28,抽到的40人中,編號(hào)落在區(qū)間[1,300]的人做試卷A,編號(hào)落在[301,760]的人做試卷B,其余的人做試卷C,則做試卷C的人數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)f-1(x)為f(x)=3x-1+x-1,x∈[0,1]的反函數(shù),則y=f(x)+f-1(x)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=(a2-1)x2+(a-1)x+3(x∈R),寫出y>0的充要條件a≥1或a<-$\frac{13}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.判斷圓x2+y2-2x-3=0和x2+y2-4y+3=0的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案