非空集合G關于運算⊕滿足:(1)對任意a、b∈G,都有a⊕b∈G;(2)存在c∈G,使得對一切a∈G,都有a⊕c=c⊕a=a,則稱G關于運算⊕為“融洽集”.現(xiàn)給出下列集合和運算:
①G={非負整數(shù)},⊕為整數(shù)的加法;
②G={偶數(shù)},⊕為整數(shù)的乘法;
③G={平面向量},⊕為平面向量的加法;
④G={二次三項式},⊕為多項式的加法.
其中G關于運算⊕為“融洽集”的是( 。
分析:根據定義進行逐一判定,對于①,a與b通過加法運算還是非負整數(shù),且存在一整數(shù)0滿足條件(2),故①為融洽集;③當a,b 都為平面向量時,兩平面向量相加任然為平面向量,且存在零向量通過向量加法滿足條件(2),而②④中找不到滿足條件(2)的c.
解答:解:根據題意我們可知①當a,b都為非負整數(shù)時,a,b通過加法運算還是非負整數(shù),且存在一整數(shù)0∈G有0+a=a+0=a,所以①為融洽集;
③當a,b 都為平面向量時,兩平面向量相加任然為平面向量,且存在零向量通過向量加法滿足條件(2);
②④中找不到滿足條件(2)的c.
故選B.
點評:本題主要考查了新定義,解題的關鍵是注意給定條件的使用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

非空集合G關于運算⊕滿足:(1)對任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e=e⊕a=a,則稱G關于運算⊕為“融洽集”.現(xiàn)給出下列集合和運算:
①G={非負整數(shù)},⊕為整數(shù)的加法.
②G={偶數(shù)},⊕為整數(shù)的乘法.
③G={平面向量},⊕為平面向量的加法.
④G={二次三項式},⊕為多項式的加法.
⑤G={虛數(shù)},⊕為復數(shù)的乘法.
其中G關于運算⊕為“融洽集”的是
 
.(寫出所有“融洽集”的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16、非空集合G關于運算⊕滿足:①對于任意a、b∈G,都有a⊕b∈G;②存在e∈G,使對一切a∈G都有a⊕e=e⊕a=a,則稱G關于運算⊕為和諧集,現(xiàn)有下列命題:
①G={a+bi|a,b為偶數(shù)},⊕為復數(shù)的乘法,則G為和諧集;
②G={二次三項式},⊕為多項式的加法,則G不是 和諧集;
③若⊕為實數(shù)的加法,G⊆R且G為和諧集,則G要么為0,要么為無限集;
④若⊕為實數(shù)的乘法,G⊆R且G為和諧集,則G要么為0,要么為無限集,其中正確的有
②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

非空集合G關于運算⊕滿足:(1)對任意a,b∈G,都有a⊕b∈G;(2)存在e∈G,使得對一切a∈G,都有a⊕e=e⊕a=a,則稱G關于運算⊕為“融洽集”;現(xiàn)給出下列集合和運算:①G={非負整數(shù)},⊕為整數(shù)的加法;   ②G={函數(shù)},⊕為函數(shù)的和;③G={不等式},⊕為同向不等式的加法;④G={虛數(shù)},⊕為復數(shù)的乘法.其中G關于運算⊕為“融洽集”的是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•梅州二模)非空集合G關于運算⊕滿足:(1)對于任意a、b∈G,都有a⊕b∈G;(2)存在e∈G,使對一切a∈G都有a⊕e=e⊕a=a,則稱G關于運算⊕為“融洽集”,現(xiàn)在給出集合和運算::
①G={非負整數(shù)},⊕為整數(shù)的加法;
②G={偶數(shù)},⊕為整數(shù)的乘法;
③G={平面向量},⊕為平面向量的加法;
④G={虛數(shù)},⊕為復數(shù)乘法,其中G為關于運算⊕的“融洽集”的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

非空集合G關于運算滿足:①對于任意a、b∈G,都有a?b∈G;②存在e∈G,使對一切a∈G都有a?e=e?a=a,則稱G關于運算為融洽集,現(xiàn)有下列集合運算:
(1)G={非負整數(shù)},為整數(shù)的加法;
(2)G={偶數(shù)},為整數(shù)的乘法;
(3)G={平面向量},為平面向量的加法;
(4)G={二次三項式},為多項式的加法;
其中關于運算的融洽集有
(1)(3)
(1)(3)

查看答案和解析>>

同步練習冊答案