16.設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當(dāng)x≥1時(shí),f(x)=2x-1,則f($\frac{2}{3}$),f($\frac{3}{2}$),f($\frac{1}{3}$)的大小關(guān)系是(  )
A.f($\frac{2}{3}$)<f($\frac{3}{2}$)<f($\frac{1}{3}$)B.f($\frac{1}{3}$)<f($\frac{2}{3}$)<f($\frac{3}{2}$)C.f($\frac{1}{3}$)<f($\frac{3}{2}$)<f($\frac{2}{3}$)D.f($\frac{3}{2}$)<f($\frac{1}{3}$)<f($\frac{2}{3}$)

分析 根據(jù)函數(shù)y=f(x+1)是偶函數(shù)得到函數(shù)關(guān)于x=1對(duì)稱,然后利用函數(shù)單調(diào)性和對(duì)稱之間的關(guān)系,進(jìn)行比較即可得到結(jié)論.

解答 解:∵y=f(x+1)是偶函數(shù),
∴f(-x+1)=f(x+1),
即函數(shù)f(x)關(guān)于x=1對(duì)稱.
∵當(dāng)x≥1時(shí),f(x)=2x-1為增函數(shù),
∴當(dāng)x≤1時(shí)函數(shù)f(x)為減函數(shù).
∵f($\frac{3}{2}$)=f($\frac{1}{2}$+1)=f(-$\frac{1}{2}$+1)=f($\frac{1}{2}$),且$\frac{1}{3}$<$\frac{1}{2}$<$\frac{2}{3}$,
∴f($\frac{1}{3}$)>f($\frac{3}{2}$)>f($\frac{2}{3}$),
故選:A.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和單調(diào)性的應(yīng)用,根據(jù)條件求出函數(shù)的對(duì)稱性是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在復(fù)平面內(nèi),復(fù)數(shù)1+i與-1+3i分別對(duì)應(yīng)向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,其中O為坐標(biāo)原點(diǎn),則$|\overrightarrow{AB}|$=$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.化簡(jiǎn):sin$\frac{4π}{3}$cos$\frac{5π}{6}$tan$\frac{3π}{4}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.一商場(chǎng)對(duì)每天進(jìn)店人數(shù)和商品銷售件數(shù)進(jìn)行了統(tǒng)計(jì)對(duì)比,得到如下表格:
人數(shù)xi10152025303540
件數(shù)yi471215202327
其中i=1,2,3,4,5,6,7.
(1)以每天進(jìn)店人數(shù)為橫軸,每天商品銷售件數(shù)為縱軸,畫(huà)出散點(diǎn)圖;
(2)求回歸直線方程.(結(jié)果保留到小數(shù)點(diǎn)后兩位)
參考公式$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$
(3)預(yù)測(cè)進(jìn)店人數(shù)為80人時(shí),商品銷售的件數(shù).(結(jié)果保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=2cos(ωx+$\frac{π}{3}$)(ω>0)的圖象與x軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為$\frac{π}{2}$的等差數(shù)列,要得到函數(shù)g(x)=2sinωx的圖象,只需將函數(shù)f(x)的圖象( 。
A.向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度
C.向右平移$\frac{5π}{12}$個(gè)單位長(zhǎng)度D.向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x≥0\\ y≤x\\ 2x+y-9≤0\end{array}\right.$,這z=$\frac{1}{3}$x-y的最小值是-2,$\frac{x-1}{{\sqrt{{{(x-1)}^2}+{y^2}}}}$的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=ax2-2x+1.
(1)試討論函數(shù)f(x)的單調(diào)性;
(2)若$\frac{1}{3}$≤a≤1,且f(x)在[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)-N(a),求g(a)的表達(dá)式;
(3)在(2)的條件下,求g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)的定義域是(0,+∞),當(dāng)x>1時(shí)f(x)>0,且f(xy)=f(x)+f(y);
(1)求f(1);
(2)證明:f(x)在定義域上是增函數(shù);
(3)如果f(3)=1,解不等式f(x)+f(x-2)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3{x}^{2}-4,x≥4}\\{0,x<0}\end{array}\right.$,則f(f(1))=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案