已知矩陣
x
2
3
1
的一個(gè)特征值為4,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.
考點(diǎn):特征值與特征向量的計(jì)算
專題:選作題,矩陣和變換
分析:根據(jù)特征多項(xiàng)式的一個(gè)零點(diǎn)為4,可得x=2,再回代到方程f(λ)=0即可解出另一個(gè)特征值為λ2=-1.最后利用求特征向量的一般步驟,可求出其對(duì)應(yīng)的一個(gè)特征向量.
解答: 解:矩陣的特征多項(xiàng)式為f(λ)=
.
λ-x-3
-2λ-1
.
=(λ-1)(λ-x)-6.
∵λ1=方4程f(λ)=0的一根,
∴(4-1)(4-x)-6=0,可得x=2.
∴方程f(λ)=0即(λ-1)(λ-2)-6=0,可得另一個(gè)特征值為:λ2=-1,
設(shè)λ2=-1對(duì)應(yīng)的一個(gè)特征向量為
α
=
x
y
,
2x+3y=-x
2x+y=-y
得x=-y,可令x=1,則y=-1,
∴矩陣的另一個(gè)特征值為-1,對(duì)應(yīng)的一個(gè)特征向量為
α
=
1
-1
點(diǎn)評(píng):本題給出含有字母參數(shù)的矩陣,在知其一個(gè)特征值的情況下求另一個(gè)特征值和相應(yīng)的特征向量,考查了特征值與特征向量的計(jì)算的知識(shí),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A1(-2,0),A2(2,0),過點(diǎn)A1的直線l1與過點(diǎn)A2的直線l2相交于點(diǎn)M,設(shè)直線l1斜率為k1,直線l2斜率為k2,且k1k2=-
3
4

(1)求直線l1與l2的交點(diǎn)M的軌跡方程;
(2)已知F2(1,0),設(shè)直線l:y=kx+m與(1)中的軌跡M交于P、Q兩點(diǎn),直線F2P、F2Q的傾斜角分別為α、β,且α+β=π,求證:直線l過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知
2
x
+
1
y
=4,其中x>0,y>0,求xy的最小值,及此時(shí)x與y的值.
(2)關(guān)于x的不等式(x+1)(x-a)≤0,討論x的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足前n項(xiàng)和Sn=2n+1-2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=(2n+1)•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求異面直線BE與AC所成的角的余弦值
(2)求二面角E-AB-C的余弦值
(3)O點(diǎn)到面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)盒子中裝有形狀大小相同的5張卡片,上面分別標(biāo)有數(shù)字1,2,3,4,5,甲乙兩人分別從盒子中隨機(jī)不放回的各抽取一張.
(Ⅰ)寫出所有可能的結(jié)果,并求出甲乙所抽卡片上的數(shù)字之和為偶數(shù)的概率;
(Ⅱ)以盒子中剩下的三張卡片上的數(shù)字作為邊長來構(gòu)造三角形,求出能構(gòu)成三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,側(cè)棱垂直于底面,側(cè)棱長為
3
,D為棱AC的中點(diǎn).
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=3,BC=4,點(diǎn)E、F分別在AB、BC邊上,將△BEF沿EF折疊,點(diǎn)B落在B′處,當(dāng)B′在矩形ABCD內(nèi)部時(shí),AB′的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y2=x與y=x2所圍成的圖形的面積是
 

查看答案和解析>>

同步練習(xí)冊答案