8.已知集合A={1,2,k},B={1,2,3,5},若A∪B={1,2,3,5},則k=3或5.

分析 利用并集定義直接求解.

解答 解:∵集合A={1,2,k},B={1,2,3,5},A∪B={1,2,3,5},
∴k=3或k=5.
故答案為:3或5.

點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意并集定義的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知{an}是由正數(shù)組成的數(shù)列,前n項和為Sn,且滿足:an+$\frac{1}{2}$=$\sqrt{2{S}_{n}+\frac{1}{4}}$(n≥1,n∈N+),則an=n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=3+\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}$(α為參數(shù)),以直角坐標系原點為極點,x軸正半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程;
(2)若直線的極坐標方程為sinθ-cosθ=$\frac{1}{ρ}$,求直線被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知p=a+$\frac{1}{a-2}\;\;(a>2)$,q=-b2-2b+3(b∈R),則p,q的大小關(guān)系為( 。
A.p≥qB.p≤qC.p>qD.p<q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某企業(yè)投資1千萬元用于一個高科技項目,每年可獲利25%.由于企業(yè)間競爭激烈,每年底需要從利潤中取出資金200萬元進行科研、技術(shù)改造與廣告投入,方能保持原有的利潤增長率.經(jīng)過多少年后,該項目的資金可以達到4倍的目標?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1(x≤0)}\\{f(x-1)(x>0)}\end{array}\right.$,若關(guān)于x方程f(x)=ax有三個不相等的實數(shù)根,則實數(shù)a的取值范圍是[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域為R的函數(shù)f(x)=$\frac{n-g(x)}{m+2g(x)}$是奇函數(shù).
(Ⅰ)確定y=g(x),y=f(x)的解析式;
(Ⅱ)若h(x)=f(x)+a在(-1,1)上有零點,求a的取值范圍;
(Ⅲ)若對任意的t∈(-1,4),不等式f(2t-3)+f(t2-k)<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.計算下列各式值
(1)(-0.1)0+$\root{3}{2}$×2${\;}^{\frac{2}{3}}$+($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$
(2)lg500+lg$\frac{8}{5}$-$\frac{1}{2}$lg64+50(lg2+lg5)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某班同學參加社會實踐活動,對本市25~55歲年齡段的人群進行某項隨機調(diào)查,得到各年齡段被調(diào)查人數(shù)的頻率分布直方圖如右(部分有缺損):
(1)補全頻率分布直方圖(需寫出計算過程);
(2)現(xiàn)從[40,55)歲年齡段樣本中采用分層抽樣方法抽取6人分成A、B兩個小組(每組3人)參加戶外體驗活動,求A組中3人來自三個不同年齡端的概率.

查看答案和解析>>

同步練習冊答案