已知f(x)=
2x,x<1
log4x,x≥1
,則f(f(3))=
 
考點:對數(shù)的運算性質,函數(shù)的值
專題:函數(shù)的性質及應用
分析:直接求出f(3)的值,然后利用分段函數(shù)求解f(f(3))的值.
解答: 解:f(x)=
2x,x<1
log4x,x≥1
,則f(3)=log43,
f(f(3))=2log43=2log2
3
=
3

故答案為:
3
點評:本題考查分段函數(shù)的值的求法,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD⊥平面CDE,H是BE的中點,G是AE,DF的交點.
(1)求證:GH∥平面CDE;
(2)求證:面ADEF⊥面ABCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐V-ABC中,頂點C在空間直角坐標系的原點處,頂點A、B、V分別在x、y、z軸上,D是AB的中點,且AC=BC=2,∠VDC=θ.
(Ⅰ)當θ=
π
3
時,求向量
AC
VD
夾角α的余弦值的大;
(Ⅱ)當角θ變化時,求直線BC與平面VAB所成角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題p:已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1、F2是橢圓的兩個焦點,P為橢圓上的一個動點,過F2作∠F1PF2的外角平分線的垂線,垂足為M,則OM的長為定值.類比此命題,在雙曲線中也有命題q:已知雙曲線
x2
a2
-
y2
b2
=1(a>b>0),F(xiàn)1、F2是雙曲線的兩個焦點,P為雙曲線上的一個動點,過F2作∠F1PF2
 
的垂線,垂足為M,則OM的長定值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個正三棱錐的高和底面邊長都為a,則它的側棱和底面所成角=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=1,anan+1=4n(n∈N*),則a2+a4+…+a2n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=x3-3x+1在點(2,3)處的切線方程
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果F1為橢圓的左焦點,A、B分別為橢圓的右頂點和上頂點,P為橢圓上的點,當PF1⊥F1A,PO∥AB(O為橢圓的中心)時,橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2+2xf′(0),則f′(2)=
 

查看答案和解析>>

同步練習冊答案