如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,則BC1與平面BB1D1D所成角的正弦值為(   )
A.B.C.D.
D
交與O點(diǎn),再連BO,則為所成角,下面就是計(jì)算了。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,平面PAD⊥平面ABCD,ABCD為正方形,PAAD,且PA=AD=2,E,F,G分別是線段PA,PD,CD的中點(diǎn)。
(1)求證:BC//平面EFG;
(2)求三棱錐EAFG的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,在直三棱柱中,平面側(cè)面。
(Ⅰ)求證:;
(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ,試判斷θφ的大小關(guān)系,并予以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在五棱錐中,底面,,。
(1)證明:平面
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在幾何體中,面為矩形,,
(1)求證;當(dāng)時(shí),平面PBD⊥平面PAC;
(2)當(dāng)時(shí),求二面角的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)如圖,四面體中,的中點(diǎn),,.(Ⅰ)求證:平面;(Ⅱ)求異面直線所成角的大;

(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題









(1)求點(diǎn)到平面的距離;
(2)求與平面所成角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

矩形ABCD(AB≤BC)中,AC=2,沿對(duì)角線AC把它折成直二面角B-AC-D后,BD=,求AB、BC的長(zhǎng).
 
翰林匯

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,ABCD-A1B1C1D1為正方體,則以下結(jié)論:
①BD∥平面CB1D1; 
②AC1⊥BD; 
③AC1⊥平面CB1D
其中正確結(jié)論的個(gè)數(shù)是           (   )
A.0B.1 C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案