如圖,長方體中,,G是上的動點。

(l)求證:平面ADG;
(2)判斷與平面ADG的位置關系,并給出證明;
(3)若G是的中點,求二面角G-AD-C的大;

(1)詳見解析(2)詳見解析(3)

解析試題分析:(1)在長方體中,,且平面,
可得平面平面
(2)由 ,且平面平面可知平面
(3)首先由證明是二面角的平面角,再利用等腰直角三角形
求出的大。
(1)是長方體,且
平面
平面, 平面平面
(2)當點重合時,在平面內(nèi),
當點不重合時,平面
證明:是長方體,

若點重合,平面確定的平面,平面
若點不重合
平面,平面
平面
(3)為二面角的平面角
中,
考點:1、直線與平面的平行與垂直;2、二面角的求法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。
(1)請在線段CE上找到一點F,使得直線BF∥平面ACD,并證明;
(2)求平面BCE與平面ACD所成銳二面角的大小;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,長方體中,,,點的中點。

(1)求證:直線∥平面;
(2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1.

(1)證明:A1C⊥平面BB1D1D;
(2)求平面OCB1與平面BB1D1D的夾角θ的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面為矩形,平面,,中點,上一點.
(1)求證:平面;
(2)當為何值時,二面角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知為平行四邊形,,,,點上,,,相交于.現(xiàn)將四邊形沿折起,使點在平面上的射影恰在直線上.
(1)求證:平面;
(2)求折后直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面為正方形,平面,已知,為線段的中點.
(1)求證:平面
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在底面為平行四邊形的四棱錐中,,
平面,且,點的中點.

(1)求證:
(2)求證:平面;
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是圓的直徑,點是圓上異于的點,直線 分別為的中點。

(1)記平面與平面的交線為,試判斷與平面的位置關系,并加以說明;
(2)設(1)中的直線與圓的另一個交點為,且點滿足,記直線
平面所成的角為異面直線所成的銳角為,二面角的大小為
①求證:
②當點為弧的中點時,,求直線與平面所成的角的正弦值。

查看答案和解析>>

同步練習冊答案