在平面上,到直線的距離等于定長(zhǎng)的點(diǎn)的軌跡是兩條平行直線.類比在空間中:
(1)到定直線的距離等于定長(zhǎng)的點(diǎn)的軌跡是
 
;
(2)到已知平面相等的點(diǎn)的軌跡是
 
考點(diǎn):類比推理
專題:規(guī)律型,推理和證明
分析:本題考查的知識(shí)點(diǎn)是類比推理,在由平面幾何性質(zhì),類比推理空間幾何體的性質(zhì),一般是:由點(diǎn)的性質(zhì)類比推理線的性質(zhì),由線的性質(zhì)類比推理面的性質(zhì),由面的性質(zhì)類比推理體的性質(zhì).
解答: 解:∵平面幾何中,已知“到一條直線的距離等于定長(zhǎng)(為正數(shù))的點(diǎn)的集合是與該直線平行的兩條直線”,
根據(jù)平面中線的性質(zhì)可類比為空間中面的性質(zhì),
若我們可以將“動(dòng)直線”類比為“一組動(dòng)直線”,
這一結(jié)論推廣到空間則為:在空間,到定直線的距離等于定長(zhǎng)的點(diǎn)的軌跡是圓柱面,
若我們可以將“定直線”類比為“定平面”,
這一結(jié)論推廣到空間則為:在空間,到一個(gè)平面的距離等于定長(zhǎng)的點(diǎn)的集合是與該平面平行的兩個(gè)平面.
故答案為:圓柱面,兩個(gè)平行平面
點(diǎn)評(píng):本小題是一道類比推理問題,主要考查創(chuàng)新思維能力.事實(shí)上,平面幾何中的不少定理、結(jié)論都可以類比推廣到空間中去,值得我們進(jìn)一步去探索和研究.類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓E:
x2
16
+
y2
4
=1內(nèi)有一點(diǎn)P(2,1),則經(jīng)過P并且以P為中點(diǎn)的弦所在直線的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{bn}是首項(xiàng)為-4,公比為2的等比數(shù)列;又?jǐn)?shù)列{an}滿足a1=60,an+1-an=bn,則數(shù)列{an}的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(
x
-
1
x
6的展開式的常數(shù)項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
3
ax3+
1
2
bx2+x的單調(diào)增區(qū)間是(-1,
1
2
),則 ab=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,過A點(diǎn)的截面AEFG分別交PB,PC,PD于點(diǎn)E,F(xiàn),G,且PB⊥AE,PD⊥AG.下列結(jié)論正確的是
 
(寫出所有正確結(jié)論的編號(hào)).
①BD∥平面AEFG;
②PC⊥平面AEFG;
③EF∥平面PAD;
④點(diǎn)A,B,C,D,E,F(xiàn),G在同一球面上;
⑤若PA=AB=1,則四棱錐O-AEFG的體積為
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式mx2-4x+m-3≤0的解集為R,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列五個(gè)命題
①任何兩個(gè)變量都具有相關(guān)關(guān)系  
②圓的周長(zhǎng)與該圓的半徑具有相關(guān)關(guān)系
③某商品的需求量與該商品的價(jià)格是一種非確定性關(guān)系
④根據(jù)散點(diǎn)圖求得的回歸直線方程可能是沒有意義的
⑤兩個(gè)變量間的相關(guān)關(guān)系可以通過回歸直線,把非確定性問題轉(zhuǎn)化為確定性問題進(jìn)行研究
正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2為橢圓焦點(diǎn),在橢圓上滿足∠F1PF2為直角的P點(diǎn)僅有兩個(gè),則離心率為(  )
A、
2
B、
1
2
C、
2
2
D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案