(本題滿分14分) 如圖(1)在等腰中,D,E,F(xiàn)分別是AB,AC和BC邊的中點,,現(xiàn)將沿CD翻折成直二面角A-DC-B.(如圖(2))
(I)試判斷直線AB與平面DEF的位置關(guān)系,并說明理由;
(II)求二面角E-DF-C的余弦值;
(III)在線段BC是否存在一點P,但APDE?證明你的結(jié)論.
解:(Ⅲ)在線段BC上不存在點P,使AP⊥DE,……………………… 9分
證明如下:在圖2中, 作AG⊥DE,交DE于G交CD于Q由已知得
∠AED=120°,于是點G在DE的延長線上,從而Q在DC的延長線
上,過Q作PQ⊥CD交BC于P∴PQ⊥平面ACD ∴PQ⊥DE
∴DE⊥平面APQ∴AP⊥DE.但P在BC的延長線上! 12分
【法二】(Ⅱ)以點D為坐標原點,直線DB、DC為x軸、y軸,建立空間直角坐標系,
設(shè)CD=a,則AC=BC=2a , AD=DB=則A(0,0,),B(,0,0), C(0,.……………………… 5分
取平面CDF的法向量為設(shè)平面EDF的法向量為,
則 得,…………6分
,……………………………………… 7分
所以二面角E—DF—C的余弦值為;…………………………… 8分
【解】(Ⅲ)設(shè),
又, ……………………………………… 9分
………………………11分
把,可知點P在BC的延長線上
所以在線段BC上不存在點P使AP⊥DE. ……………………………………………… 12分
【解析】略
科目:高中數(shù)學 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實數(shù)m的值
(Ⅱ)若ACRB,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題
(本題滿分14分)
已知點是⊙:上的任意一點,過作垂直軸于,動點滿足。
(1)求動點的軌跡方程;
(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com