已知函數(shù)f(x)=x3+ax2+b的圖象在點(diǎn)P(1,0)處的切線與直線3x+y=0平行,
(Ⅰ)求常數(shù)a、b的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,4]上的最小值和最大值.
【答案】分析:(Ⅰ)由題目條件知,點(diǎn)P(1,0)為切點(diǎn),且函數(shù)在改點(diǎn)處的導(dǎo)數(shù)值為切線的斜率,從而建立關(guān)于a,b的方程,可求得a,b的值.(Ⅱ)由(Ⅰ)確定了函數(shù)及其導(dǎo)數(shù)的解析式,通過(guò)探討導(dǎo)數(shù)在區(qū)間[0,4]上的符號(hào)得函數(shù)的單調(diào)性,即可的函數(shù)在區(qū)間[0,4]上的最大值和最小值.
解答:解:(Ⅰ)f'(x)=3x2+2ax,
依題意有:f'(1)=3+2a=-3,
∴a=-3.
又f(1)=a+b+1=0
∴b=2.
綜上:a=-3,b=2
(Ⅱ)由(Ⅰ)知f(x)=x3-3x2+2;f'(x)=3x2-6x
令f'(x)=0得:x=0,x=2
當(dāng)0≤x≤4時(shí),隨x的變化,f'(x)、f(x)的變化情況如下表:

從上表可知:當(dāng)x=2時(shí),f(x)取最小值為f(2)=-2;
當(dāng)x=4時(shí)f(x)取最大值是f(4)=18
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)在最大值,最小值中的應(yīng)用,同時(shí)考查了導(dǎo)數(shù)的幾何意義,以及學(xué)生靈活轉(zhuǎn)化題目條件的能力,是個(gè)中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案