關(guān)于x的一元二次不等式x2-(a+1)x+a<0的解集為A,集合B={x| 
x-2
x
<0}
,且A∩B=A,求實數(shù)a的取值范圍.
B={x|
x-2
x
<0}
?{x|0<x<2},
x2-(a+1)x+a<0?(x-a)(x-1)<0,
∵A∩B=A,∴A⊆B,
∴當(dāng)A=∅時,a=1,滿足題意,
當(dāng)A≠∅時,若a>1,則A=(1,a),
∵A⊆B,
∴1<a≤2,
若a<1,則A=(a,1),
∵A⊆B,
∴0≤a<1,
綜上所述實數(shù)a的取值范圍是[0,2].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•豐臺區(qū)一模)已知a∈Z,關(guān)于x的一元二次不等式x2-6x+a≤0的解集中有且僅有3個整數(shù),則所有符合條件的a的值之和是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的一元二次不等式x2+2mx+4>0對?x∈R恒成立;命題q:函數(shù)f(x)=(m-1)x+2是增函數(shù).
若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的一元二次不等式ax2+bx+1>0的解集為(-1,
13
)
,則a-b=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的一元二次不等式x2-k•x+1>0的解集為R,則實數(shù)k的取值范圍是
(-2,2)
(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•藍(lán)山縣模擬)已知關(guān)于x的一元二次不等式ax2+bx+c≥0在實數(shù)集上恒成立,且a<b,則T=
a+b+cb-a
的最小值為
3
3

查看答案和解析>>

同步練習(xí)冊答案