已知圓C的方程為x2+y2=4,過(guò)點(diǎn)M(2,4)作圓C的兩條切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過(guò)橢圓T:
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓T的方程;
(2)已知直線l與橢圓T相交于P,Q兩不同點(diǎn),直線l方程為y=kx+
3
(k>0)
,O為坐標(biāo)原點(diǎn),求△OPQ面積的最大值.
(1)由題意:一條切線方程為:x=2,設(shè)另一條切線方程為:y-4=k(x-2)..(2分)
則:
|4-2k|
k2+1
=2
,解得:k=
3
4
,此時(shí)切線方程為:y=
3
4
x+
5
2

切線方程與圓方程聯(lián)立,可得x2+(
3
4
x+
5
2
2=4,從而可得x=-
6
5
,y=
8
5
,
則直線AB的方程為x+2y=2….(4分)
令x=0,解得y=1,∴b=1;令y=0,得x=2,∴a=2
故所求橢圓方程為
x2
4
+y2=1
….(6分)
(2)聯(lián)立
y=kx+
3
x2
4
+y2=1.
整理得(1+4k2)x2+8
3
kx+8=0
,
令P(x1,y1),Q(x2,y2),則x1+x2=
-8
3
k
1+4k2
,x1x2=
8
1+4k2

△=(8
3
k)2-32(1+4k2)>0
,即:2k2-1>0…..(8分)
又原點(diǎn)到直線l的距離為d=
3
1+k2
|PQ|=
1+k2
|x1-x2|
,…..(10分)
S△OPQ=
1
2
|PQ|•d=
3
2
|x1-x2|=
3
2
(x1+x2)2-4x1x2
=2
6
2k2-1
(1+4k2)2

=2
6
2k2-1
4(2k2-1)2+12(2k2-1)+9
=2
6
1
4(2k2-1)+12+
9
2k2-1
≤1

當(dāng)且僅當(dāng)k=
5
2
時(shí)取等號(hào),則△OPQ面積的最大值為1.            …..(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2+4x-2y=0,經(jīng)過(guò)點(diǎn)P(-4,-2)的直線l與圓C相交所得到的弦長(zhǎng)為2,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山二模)已知圓C的方程為x2+y2+2x-2y+1=0,當(dāng)圓心C到直線kx+y+4=0的距離最大時(shí),k的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2=r2,在圓C上經(jīng)過(guò)點(diǎn)P(x0,y0)的切線方程為x0x+y0y=r2.類比上述性質(zhì),則橢圓
x2
4
+
y2
12
=1
上經(jīng)過(guò)點(diǎn)(1,3)的切線方程為
x+y-4=0
x+y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2-2x+ay+1=0,且圓心在直線2x-y-1=0.
(1)求圓C的標(biāo)準(zhǔn)方程.
(2)若P點(diǎn)坐標(biāo)為(2,3),求圓C的過(guò)P點(diǎn)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2=4,過(guò)點(diǎn)M(2,4)作圓C的兩條切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過(guò)橢圓T:
x2
a2
+
y2
b2
(a>b>0)
的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓T的方程;
(2)是否存在斜率為
1
2
的直線l與曲線C交于P、Q兩不同點(diǎn),使得
OP
OQ
=
5
2
(O為坐標(biāo)原點(diǎn)),若存在,求出直線l的方程,否則,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案