已知點A(1,2),B(2,0),P(0,3),Q(-1,1),M(1,0),N(-4,0)六點,線段AB,PQ,MN能圍成一個三角形嗎?為什么?
考點:直線的斜率
專題:直線與圓
分析:利用兩點之間的距離公式、三角形兩邊之和大于第三邊的性質(zhì)即可得出.
解答: 解:如圖所示,
線段|AB|=
1+22
=
5
,
|PQ|=
1+22
=
5

|MN|=5,
∵|AB|+|PQ|=2
5
<5,
因此不能圍成一個三角形.
點評:本題考查了兩點之間的距離公式、三角形兩邊之和大于第三邊的性質(zhì),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

四棱錐P-ABCD的頂點P在底面ABCD中的投影恰好是A,其三視圖如圖所示,則四棱錐P-ABCD的表面積為( 。
A、(2
2
+1)a2
B、2a2
C、(1+
2
)a2
D、(2+
2
)a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

BC
AB
|AB|
+
AC
|AC|
互相垂直,則△ABC形狀為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=2x2-4x+p與直線y=1相切,則p的值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知空間四邊形ABCD的每條邊和對角線長都等于1,點E、F分別是AB、AD的中點,則
BF
CE
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明:cos2α+cos2β=2cos(α+β)cos(α-β).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
)-2cos(x+
π
4
)sin(x+
π
4

(1)求函數(shù)f(x)的最小正周期和圖象的對稱軸;
(2)求函數(shù)f(x)在區(qū)間[-
π
12
π
2
]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,(Sn-1)an-1=Sn-1an-1-an(n≥2).
(1)求數(shù)列{an}的通項公式;
(2)設bn=an2,數(shù)列{bn}的前n項和為Tn,試比較Tn與2-
1
n
的大。
(3)若
n
k=1
1
1
an
+k
>-
3
2
+loga(2a-1)(其中a>0且a≠1)對任意正整數(shù)n都成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
tan22.5°
1-tan222.5°
=
 

查看答案和解析>>

同步練習冊答案