【題目】某超市在元旦期間開展優(yōu)惠酬賓活動(dòng),凡購物滿100元可抽獎(jiǎng)一次,滿200元可抽獎(jiǎng)兩次依此類推抽獎(jiǎng)箱中有7個(gè)白球和3個(gè)紅球,其中3個(gè)紅球上分別標(biāo)有10元,10元,20元字樣每次抽獎(jiǎng)要從抽獎(jiǎng)箱中有放回地任摸一個(gè)球,若摸到紅球,根據(jù)球上標(biāo)注金額獎(jiǎng)勵(lì)現(xiàn)金;若摸到白球,沒有任何獎(jiǎng)勵(lì)

)一次抽獎(jiǎng)中,已知摸中了紅球,求獲得20元獎(jiǎng)勵(lì)的概率;

小明有兩次抽獎(jiǎng)機(jī)會(huì),用表示他兩次抽獎(jiǎng)獲得的現(xiàn)金總額,寫出的分布列與數(shù)學(xué)期望

【答案】

【解析】試題分析:(1;(2的可能取值為0,10,20,30,40,寫出分布列,求出期望。

試題解析:

(Ⅰ)設(shè)事件,事件

則所求概率為

的可能取值為0,10,20,30,40

的分布列為

所以,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線處的切線與軸垂直,求的最大值;

(2)若對(duì)任意都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體中,,點(diǎn)E是線段AB中點(diǎn).

證明:;

求二面角的大小的余弦值;

A點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長是短軸長的倍,且過點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若的頂點(diǎn)、在橢圓上, 所在的直線斜率為 所在的直線斜率為,若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分)已知p:方程有兩個(gè)不等的負(fù)實(shí)根,q:方程

無實(shí)根,若為真,為假,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)設(shè),試討論單調(diào)性;

(2)設(shè),當(dāng)時(shí),任意,存在,使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A過定點(diǎn),且在軸上截得線段的長為 4,直線軸于點(diǎn).

(1)求動(dòng)圓圓心的軌跡的方程;

(2)直線與軌跡交于兩點(diǎn),分別以為切點(diǎn)作軌跡的切線交于點(diǎn),若.試判斷實(shí)數(shù)所滿足的條件,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,

直線與以橢圓C的右焦點(diǎn)為圓心,以橢圓的長半軸長為半徑的圓相切.

)求橢圓C的方程;

)設(shè)P為橢圓C上一點(diǎn),若過點(diǎn)的直線與橢圓C相交于不同的兩點(diǎn)ST

滿足O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以, ,,分組的頻率分布直方圖如圖示.

(Ⅰ)求直方圖中的值;

(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);

(Ⅲ)在月平均用電量為,,的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

同步練習(xí)冊(cè)答案