如圖,在正方體ABCD-A1B1C1D1中,下列結(jié)論不正確的是(  )
A、C1D1⊥B1C
B、BD1⊥AC
C、BD1∥B1C
D、∠ACB1=60°
考點(diǎn):空間中直線與直線之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:如圖所示,建立空間直角坐標(biāo)系.利用向量垂直與數(shù)量積的關(guān)系即可得出.
解答: 解:如圖所示,建立空間直角坐標(biāo)系.
不妨設(shè)正方體的棱長(zhǎng)=1.
則D(0,0,0),B(1,1,0),C(0,1,0),B1(1,1,1),D1(0,0,1).
BD1
=(-1,-1,1),
B1C
=(-1,0,-1).
BD1
B1C
=1+0-1=0.
BD1
B1C

因此不可能有BD1∥B1C.
故選:C.
點(diǎn)評(píng):本題考查了空間線線位置關(guān)系及其判定方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正奇數(shù)按下表排列,則數(shù)字2013在(  )
   第一列  第二列  第三列  第四列  第五列
 第一行    1  3  5  7
 第二行  15  13  11  9  
 第三行    17  19  21  23
 第四行  31  29  27  25  
A、第252行,第2列
B、第252行,第3列
C、第153行,第3列
D、第253行,第4列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)如表提供的某廠生產(chǎn)A產(chǎn)品過(guò)程中產(chǎn)量x(噸)與相應(yīng)原料消耗y(噸)的對(duì)應(yīng)數(shù)據(jù):
x 3 4 5 6
y 2.5 t 4 4.5
求得y關(guān)于x的線性回歸方程為
y
=0.7x+0.35,那么表中t的值為( 。
A、3B、3.15
C、3.5D、4.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某單位業(yè)務(wù)人員、管理人員、后勤服務(wù)人員人數(shù)之比依次為15:3:2.為了了解該單位職員的某種情況,采用分層抽樣方法抽出一個(gè)容量為n的樣本,樣本中業(yè)務(wù)人員人數(shù)為30,則此樣本的容量n為( 。
A、20B、30C、40D、80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓C的圓心坐標(biāo)為(2,-3),且圓C經(jīng)過(guò)點(diǎn)M(5,-7),則圓C的半徑為( 。
A、
5
B、5
C、25
D、
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別F1、F2焦距為2,且與雙曲線
x2
2
-y2=1共頂點(diǎn).P為橢圓C上一點(diǎn),直線PF1交橢圓C于另一點(diǎn)Q.
(1)求橢圓C的方程;
(2)若點(diǎn)P的坐標(biāo)為(0,b),求過(guò)P、Q、F2三點(diǎn)的圓的方程;
(3)若
F1P
QF1
,且λ∈[
1
2
,2],求
OP
OQ
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)盒子中裝有標(biāo)號(hào)為1,2,3,4的4張標(biāo)簽,隨機(jī)地選取兩張標(biāo)簽,根據(jù)下列條件求兩張標(biāo)簽上的數(shù)字為相鄰整數(shù)的概率:
(1)標(biāo)簽的選取是無(wú)放回的;
(2)標(biāo)簽的選取是有放回的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A為銳角sinA=
3
5
,tan(A-B)=-
1
2

(1)求tanA及cos2A的值  
(2)求tanB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0.
(1)令ω=
1
2
,求函數(shù)F(x)=f(x)+f(x+π)的單調(diào)區(qū)間;
(2)令ω=2,將函數(shù)y=f(x)的圖象向左平移
π
6
個(gè)單位,再往上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象.對(duì)任意的a∈R,求y=g(x)在區(qū)間[a,a+10π]上零點(diǎn)個(gè)數(shù)的所有可能值.

查看答案和解析>>

同步練習(xí)冊(cè)答案