【題目】下列四個(gè)命題中,正確的命題是_________

①已知點(diǎn),的面積為10.

②若一個(gè)三角形,采用斜二測(cè)畫(huà)法作出其直觀圖,則其直觀圖的面積是原三角形面積的

③過(guò)點(diǎn)且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線方程為.

④直線與直線的距離是.

【答案】②④

【解析】

利用兩點(diǎn)間的距離公式以及點(diǎn)斜式、點(diǎn)到直線的距離公式可判斷①;根據(jù)斜二測(cè)畫(huà)法的步驟和方法可判斷②;根據(jù)直線過(guò)原點(diǎn)與坐標(biāo)軸的截距也互為相反可判斷③;由兩平行線間的距離公式可判斷④.

對(duì)于①,由點(diǎn)

,

,則直線,整理得

點(diǎn)的距離為,故,故①錯(cuò);

對(duì)于②,設(shè)三角形底邊為、高為;斜二測(cè)畫(huà)法水平長(zhǎng)度不變?nèi)詾?/span>,

豎直變?yōu)樵瓉?lái)的一半,垂直角變?yōu)?/span>

斜二測(cè)畫(huà)出的三角形高為,故直觀圖的面積是原三角形面積的倍,

故②正確;

對(duì)于③,過(guò)點(diǎn)且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線方程為.

當(dāng)直線過(guò)原點(diǎn)時(shí)也滿足條件,即,故③錯(cuò)誤;

對(duì)于④,直線與直線平行,直線化為

故直線間的距離為,故④正確;

故答案為:②④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(1)討論函數(shù)的單調(diào)性;

(2)已知,,)是函數(shù)圖像上的兩點(diǎn),證明:存在,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在古代三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽創(chuàng)制了一幅“趙爽弦圖”,由四個(gè)全等的直角三角形圍成一個(gè)大正方形,中間空出一個(gè)小正方形(如圖陰影部分)。若直角三角形中較小的銳角為a,F(xiàn)向大正方形區(qū)城內(nèi)隨機(jī)投擲一枚飛鏢,要使飛鏢落在小正方形內(nèi)的概率為,則_____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅行團(tuán)按以下規(guī)定選擇五個(gè)景區(qū)游玩:①若去,則去;②不能同時(shí)去;③都去,或者都不去;④去且只去一個(gè);⑤若去,則要去.那么,這個(gè)旅游團(tuán)最多能去的景區(qū)為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)(,),直線l的極坐標(biāo)方程為ρcos(θ)=a,.

(1)若點(diǎn)A在直線l上,求直線l的直角坐標(biāo)方程;

(2)C的參數(shù)方程為(為參數(shù)),若直線與圓C相交的弦長(zhǎng)為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,的中點(diǎn),現(xiàn)將折起,使得平面及平面都與平面垂直.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)如圖,在多面體中, 是正方形, 平面, 平面, ,點(diǎn)為棱的中點(diǎn).

(1)求證:平面平面;

(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù)滿足下列條件:當(dāng)時(shí),的最小值為0,且成立;當(dāng)時(shí),恒成立.

1)求的解析式;

2)若對(duì),不等式恒成立、求實(shí)數(shù)的取值范圍;

3)求最大的實(shí)數(shù),使得存在實(shí)數(shù),只要當(dāng)時(shí),就有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某品種一批樹(shù)苗生長(zhǎng)情況,在該批樹(shù)苗中隨機(jī)抽取了容量為120的樣本,測(cè)量樹(shù)苗高度(單位:cm),經(jīng)統(tǒng)計(jì),其高度均在區(qū)間[19,31]內(nèi),將其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6組,制成如圖所示的頻率分布直方圖.其中高度為27 cm及以上的樹(shù)苗為優(yōu)質(zhì)樹(shù)苗.

(1)求圖中a的值

(2)已知所抽取的這120棵樹(shù)苗來(lái)自于A,B兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:

A試驗(yàn)區(qū)

B試驗(yàn)區(qū)

合計(jì)

優(yōu)質(zhì)樹(shù)苗

20

非優(yōu)質(zhì)樹(shù)苗

60

合計(jì)

將列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為優(yōu)質(zhì)樹(shù)苗與A,B兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說(shuō)明理由;

(3)用樣本估計(jì)總體,若從這批樹(shù)苗中隨機(jī)抽取4棵,其中優(yōu)質(zhì)樹(shù)苗的棵數(shù)為X,求X的分布列和數(shù)學(xué)期望EX

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中.)

查看答案和解析>>

同步練習(xí)冊(cè)答案