(理)如圖(1),正△ABC的邊長(zhǎng)為2a,CD是AB邊上的高,E、F分別是AC、BC邊的中點(diǎn).現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B〔如圖(2)〕.

(1)試判斷翻折后直線AB與平面DEF的位置關(guān)系,并說(shuō)明理由;

(2)求二面角B-AC-D的余弦值.

(文)如圖,在三棱錐P—ABC中,E、F、G、H分別是AB、AC、PC、BC的中點(diǎn),且PA=PB,AC=BC.

(1)證明AB⊥PC;

(2)證明PE∥平面FGH.

(理)解:(1)∵在題圖(2)中,E、F分別為AC、BC的中點(diǎn),∴AB∥EF.         

而AB面DEF,EF面DEF,∴AB∥面DEF.                                  

(2)在題圖(2)中,作DG⊥AC,垂足為G,連結(jié)BG.

易證△BDG為直角三角形,∠BGD為二面角B-AC-D的平面角.                 

在△BDG中,BD=a,DG=,

∴BG=a.∴cos∠BGD=.

(也可用向量法解)                                                         

(文)證明:(1)連結(jié)EC,∵△ABC為等腰三角形,

∴EC⊥AB.                                                                

又∵PA=PB,∴AB⊥PE.                                                     

∴AB⊥面PEC,PC面PEC.

∴AB⊥PC.                                                              

(2)連結(jié)FH,交EC于R.連結(jié)GR.

在△PEC中,GR∥PE.                                                     

∵PE面FHG,GR面FHG,

∴PE∥面FHG.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年宣武區(qū)二模理)(13分)

如圖,在正三棱柱ABC―A1B1C1中,BB­1=BC=2,且M是BC的中點(diǎn),點(diǎn)N在CC1上。

   (1)試確定點(diǎn)N的位置,使AB1⊥MN;

   (2)當(dāng)AB1⊥MN時(shí),求二面角M―AB1―N的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年海淀區(qū)期末理)(14分)

       如圖,在正三棱柱ABC―A1B1C1中,點(diǎn)D是棱AB的中點(diǎn),BC=1,AA1=

   (I)求證:BC1//平面A1DC;

   (II)求C1到平面A1DC的距離;

   (III)求二面角D―A1C―A的大小。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年江西卷理)如圖1,一個(gè)正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實(shí)心裝飾塊,容器內(nèi)盛有升水時(shí),水面恰好經(jīng)過(guò)正四棱錐的頂點(diǎn)P。如果將容器倒置,水面也恰好過(guò)點(diǎn)(圖2)。有下列四個(gè)命題:

A.正四棱錐的高等于正四棱柱高的一半

B.將容器側(cè)面水平放置時(shí),水面也恰好過(guò)點(diǎn)

C.任意擺放該容器,當(dāng)水面靜止時(shí),水面都恰好經(jīng)過(guò)點(diǎn)

D.若往容器內(nèi)再注入升水,則容器恰好能裝滿

其中真命題的代號(hào)是:              (寫出所有真命題的代號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年度新課標(biāo)高二上學(xué)期數(shù)學(xué)單元測(cè)試4 題型:解答題

 

 
    (理)如圖,在正三棱柱(底面為正三角形,側(cè)棱與底面垂直)ABCA1B1C1中,M、N

分別為A1B1、BC的中點(diǎn).

   (I)試求的值,使

   (II)設(shè)AC1的中點(diǎn)為P,在(I)的條件下,求證:NP⊥平面AC1M.

 

 

 

(文)已知函數(shù)的極大值

為7;當(dāng)x=3時(shí),fx)有極小值.

(I)求函數(shù)fx)的解析式;

(II)求函數(shù)fx)在點(diǎn)P(1,f(1))處的切線方程.

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案