【題目】在《周髀算經(jīng)》中,把圓及其內接正方形稱為圓方圖,把正方形及其內切圓稱為方圓圖.圓方圖和方圓圖在我國古代的設計和建筑領域有著廣泛的應用.山西應縣木塔是我國現(xiàn)存最古老、最高大的純木結構樓閣式建筑,它的正面圖如下圖所示.以該木塔底層的邊作正方形,以點或點為圓心,以這個正方形的對角線為半徑作圓,會發(fā)現(xiàn)塔的高度正好跟此對角線長度相等.以該木塔底層的邊作正方形,會發(fā)現(xiàn)該正方形與其內切圓的一個切點正好位于塔身和塔頂?shù)姆纸缇上.經(jīng)測量發(fā)現(xiàn),木塔底層的邊不少于47.5米,塔頂到點的距離不超過19.9米,則該木塔的高度可能是(參考數(shù)據(jù):)(

A.66.1B.67.3C.68.5D.69.0

【答案】B

【解析】

高度和木塔高度之比應為,再根據(jù)木塔底層的邊不少于47.5米,即可求解.

解:設木塔的高度為,有圖可知,(米),

同時(米),

即木塔的高度應在67.165米至67.918米之間,只有B符合.

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中,,,,,點是線段的中點,將,分別沿,

向上折起,使,重合于點,得到三棱錐.試在三棱錐中,

1)證明:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進節(jié)能減排,某年國家對消費者購買新能源汽車給予補貼,其中對純電動乘用車補貼標準如下表:

新能源汽車補貼標準

車輛類型

續(xù)駛里程

純電動乘用車

3.5萬元/

5萬元/

6萬元/

某校研究學習小組從汽車市場上隨機選取了輛純電動乘用車,根據(jù)其續(xù)駛里程(單次充電后能行駛的最大里程)作出了如下的頻率與頻數(shù)的統(tǒng)計表:

分組

頻數(shù)

頻率

2

0.2

5

合計

1

1)若從這輛純電動乘用車中任選2輛,求選到的2輛車續(xù)駛里程都不低于150km的概率.

2)若以頻率作為概率,設為購買一輛純電動乘用車獲得的補貼,求的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】日晷是中國古代用來測定時間的儀器,利用與晷面垂直的晷針投射到晷面的影子來測定時間.把地球看成一個球(球心記為O),地球上一點A的緯度是指OA與地球赤道所在平面所成角,點A處的水平面是指過點A且與OA垂直的平面.在點A處放置一個日晷,若晷面與赤道所在平面平行,點A處的緯度為北緯40°,則晷針與點A處的水平面所成角為(

A.20°B.40°

C.50°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求曲線y=fx)在點(1f1))處的切線與兩坐標軸圍成的三角形的面積;

2)若fx≥1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知單調遞增的等比數(shù)列滿足,且的等差中項.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,對任意正數(shù)數(shù), 恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角所對的邊分別為,已知.

(1)求角的大;

(2),且,求邊;

(3),求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市環(huán)保部門對市中心每天的環(huán)境污染情況進行調查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)與時刻(時)的關系為,,其中是與氣象有關的參數(shù),且.若用每天的最大值為當天的綜合污染指數(shù),并記作

1)令,,求的取值范圍;

2)求的表達式,并規(guī)定當時為綜合污染指數(shù)不超標,求當在什么范圍內時,該市市中心的綜合污染指數(shù)不超標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形.平面,分別為的中點,與平面所成的角為

1)證明:為異面直線的公垂線;

2)若,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案