分析 記$\overrightarrow{OA}$,$\overrightarrow{OP}$的夾角為θ,$θ∈[0,\frac{2π}{3}]$.設(shè)$\overrightarrow{OA}$為直角坐標(biāo)系的x軸.
$\overrightarrow{OP}$=(rcosθ,rsinθ)($\frac{1}{2}$≤r≤2),$\overrightarrow{OA}$=(2,0),$\overrightarrow{OB}$=(-1,$\sqrt{3}$),
代入$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,得有(rcosθ,rsinθ)=(2x,0)+(-y,$\sqrt{3}$y),
⇒rcosθ=2x-y,rsinθ=$\sqrt{3}$y,故2x+y=rcosθ+$\frac{2r}{\sqrt{3}}sinθ$=r($\frac{2}{\sqrt{3}}sinθ+cosθ$),運用三角函數(shù)的知識求解.
解答 解:記$\overrightarrow{OA}$,$\overrightarrow{OP}$的夾角為θ,$θ∈[0,\frac{2π}{3}]$.設(shè)$\overrightarrow{OA}$為直角坐標(biāo)系的x軸.
$\overrightarrow{OP}$=(rcosθ,rsinθ)($\frac{1}{2}$≤r≤2),$\overrightarrow{OA}$=(2,0),$\overrightarrow{OB}$=(-1,$\sqrt{3}$),
代入$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,得有(rcosθ,rsinθ)=(2x,0)+(-y,$\sqrt{3}$y),
⇒rcosθ=2x-y,rsinθ=$\sqrt{3}$y,
故2x+y=rcosθ+$\frac{2r}{\sqrt{3}}sinθ$=r($\frac{2}{\sqrt{3}}sinθ+cosθ$)
$\frac{2}{\sqrt{3}}sinθ+cosθ$=$\frac{\sqrt{21}}{3}(sinθ×\frac{2}{\sqrt{7}}+cosθ×\frac{\sqrt{3}}{\sqrt{7}})$=$\frac{\sqrt{21}}{3}sin(θ+β)$,其中cosβ=$\frac{2}{\sqrt{7}}$,sin$β=\frac{\sqrt{3}}{\sqrt{7}}$.
又∵$θ∈[0,\frac{2π}{3}]$.$\frac{\sqrt{21}}{3}sin(θ+β)$可以取到最大值$\frac{\sqrt{21}}{3}$,
當(dāng)θ=0時.$\frac{2}{\sqrt{3}}sinθ+cosθ$=1,當(dāng)θ=1200時.$\frac{2}{\sqrt{3}}sinθ+cosθ$=$\frac{1}{2}$.
∴$\frac{2}{\sqrt{3}}sinθ+cosθ$∈[$\frac{1}{2}$,$\frac{\sqrt{21}}{3}$],
$\frac{1}{2}r$≤2x+y$≤\frac{\sqrt{21}}{3}r$.∵$\frac{1}{2}$≤r≤2,∴$\frac{1}{4}$≤2x+y≤$\frac{2\sqrt{21}}{3}$
故答案為:[$\frac{1}{4}$,$\frac{2\sqrt{21}}{3}$]
點評 本題考查了向量的基本定義即三角恒等變形、函數(shù)性質(zhì),屬于壓軸題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 7 | C. | $\frac{7}{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com