如圖所示,已知圓的方程是(x-1)2+y2=1,四邊形PABQ為該圓內(nèi)接梯形,底邊AB為圓的直徑且在x軸上,以A,B為焦點(diǎn)的橢圓C過P,Q兩點(diǎn).
(1)若直線QP與橢圓C的右準(zhǔn)線相交于點(diǎn)M,求點(diǎn)M的軌跡方程;
(2)當(dāng)梯形PABQ周長最大時(shí),求橢圓C的方程.
解:(1)解法一:設(shè)橢圓C:+=1(a>b>0). 因?yàn)?c=2,所以c=1,所以右準(zhǔn)線方程為x=a2+1,設(shè)M(x,y),P(x0,y0),連接PB,則|PA|2+|PB|2=|AB|2,所以(|PA|+|PB|)2-2|PA|·|PB|=4.所以(2a)2-2·2|y0|=4. y0=±(a2-1).由消去a,得y=±(x-2).因?yàn)?<|y0|<1,所以0<a2-1<1,1<a2<2.所以2<x<3.即M點(diǎn)的軌跡方程是y=±(x-2)(2<x<3). 解法二:如解法一, 由解得=b2(a2-1).因?yàn)閎2=a2-c2=a2-1,所以=(a2-1).即y0=±(a2-1).以下同解法一. (2)解法一:設(shè)∠ABO=α,α∈(,),則|AB|=2,|PA|=|BQ|=2cosα, |PQ|=|AB|-2|BQ|cosα=2-4cos2α.所以周長L=(2-4cos2α)+4cosα+2. 。剑4(cosα-)2+5.當(dāng)cosα=,即α=時(shí),周長L取最大值5.此時(shí)|BQ|=1,|AQ|=,2a=|BQ|+|AQ|,a2=()2=,b2=a2-1=,所以所求橢圓C的方程為+=1. 解法二:設(shè)P(x0,y0),|PA|=t,因?yàn)閨PA|2=(||AB|-x0|)|AB|,所以t2=2(2-x0).x0=2-.因?yàn)?<x0<2,所以0<t<.梯形周長L=|PQ|+2|PA|+|AB| =2(x0-1)+2t+2 。2(1-)+2t+2 。剑璽2+2t+4 。剑(t-1)2+5. 當(dāng)t=1時(shí),L取最大值5,此時(shí)|PB|=,以下同解法一. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,在直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點(diǎn),E是B1C的中點(diǎn).
(1)求cos(,).
(2)在線段AA1上是否存在點(diǎn)F,使CF⊥平面B1DF?若存在,求出||;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,橢圓方程為+=1(a>b>0),A,P,F(xiàn)分別為左頂點(diǎn),上頂點(diǎn),右焦點(diǎn),E為x軸正方向上一點(diǎn),且||,||,||成等比數(shù)列.又點(diǎn)N滿足=(+),PF的延長線與橢圓的交點(diǎn)為Q,過Q與x軸平行的直線與PN的延長線交于M.
(1)求證:·=·.
(2)若=2,且||=,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
如圖所示,某電子器件是由三個(gè)電阻組成的回路,其中共有六個(gè)焊接點(diǎn)A,B,C,D,E,F(xiàn),如果某個(gè)焊接點(diǎn)脫落,整個(gè)電路就會(huì)不通.
(1)求因焊接點(diǎn)脫落致使電路不通的所有不同的脫落種數(shù).
(2)每個(gè)焊接點(diǎn)脫落的概率均是,現(xiàn)在發(fā)現(xiàn)電路不通了,那么至少有兩個(gè)焊接點(diǎn)脫落的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007屆潛山中學(xué)理復(fù)(一、二)數(shù)學(xué)周考試卷 題型:044
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com