(本題15分)已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為,直線交橢圓于不同的兩點(diǎn),.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,且,求的值(點(diǎn)為坐標(biāo)原點(diǎn));
(Ⅲ)若坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題15分) 已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為,直線交橢圓于不同的兩點(diǎn),.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,且,求的值(點(diǎn)為坐標(biāo)原點(diǎn));
(Ⅲ)若坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分15分)已知橢圓的離心率為,點(diǎn)是橢圓上一定點(diǎn),若斜率為的直線與橢圓交于不同的兩點(diǎn)、.
(I)求橢圓方程;(II)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆浙江省溫州市高三下學(xué)期第三次理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,經(jīng)過(guò)點(diǎn),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓的左、右頂點(diǎn)分別為、,點(diǎn)為直線上任意一點(diǎn)(點(diǎn)不在軸上),
連結(jié)交橢圓于點(diǎn),連結(jié)并延長(zhǎng)交橢圓于點(diǎn),試問(wèn):是否存在,使得成立,若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省高二秋學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本題滿分15分)已知橢圓的兩焦點(diǎn)為F1(),F2(1,0),直線x = 4是橢圓的一條準(zhǔn)線.
(1)求橢圓方程;
(2)設(shè)點(diǎn)P在橢圓上,且,求cos∠F1PF2的值;
(3)設(shè)P是橢圓內(nèi)一點(diǎn),在橢圓上求一點(diǎn)Q,使得最。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com