若函數(shù)f(x)的導(dǎo)函數(shù)是(x)=-x(x+1),則函數(shù)g(x)=f(logax)(0<a<1)的單調(diào)遞減區(qū)間是(   )
A.[-1,0]B.[,+∞),(0,1]
C.[1, ]D.(-∞,) ,(,+∞)
C
(x)=-x(x+1)知,-1<x<0時(shí), (x)>0f(x)是增函數(shù);
x>0或x<-1時(shí),(x)<0f(x)是減函數(shù);
而0<a<1時(shí),logax為減函數(shù)
所以由復(fù)合函數(shù)的性質(zhì)知, 若函數(shù)g(x)=f(logax)(0<a<1)為單調(diào)遞減函數(shù),則-1<logax<0x∈[1, ]
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù).為常數(shù)且
(1)當(dāng)時(shí),求;
(2)若滿(mǎn)足,但,則稱(chēng)的二階周期點(diǎn).證明函數(shù)有且僅有兩個(gè)二階周期點(diǎn),并求二階周期點(diǎn);
(3)對(duì)于(2)中的,設(shè),記的面積為,求在區(qū)間上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為了尋找馬航殘骸,我國(guó)“雪龍?zhí)枴笨瓶即?014年3月26日從港口出發(fā),沿北偏東角的射線(xiàn)方向航行,而在港口北偏東角的方向上有一個(gè)給科考船補(bǔ)給物資的小島海里,且.現(xiàn)指揮部需要緊急征調(diào)位于港口正東海里的處的補(bǔ)給船,速往小島裝上補(bǔ)給物資供給科考船.該船沿方向全速追趕科考船,并在處相遇.經(jīng)測(cè)算當(dāng)兩船運(yùn)行的航線(xiàn)與海岸線(xiàn)圍成的三角形的面積最小時(shí),這種補(bǔ)給方案最優(yōu).

(1)求關(guān)于的函數(shù)關(guān)系式;
(2)應(yīng)征調(diào)位于港口正東多少海里處的補(bǔ)給船只,補(bǔ)給方案最優(yōu)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ax2-2ax+2+b(a≠0),若f(x)在區(qū)間[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)-mx在[2,4]上單調(diào),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知f是有序數(shù)對(duì)集合上的一個(gè)映射,正整數(shù)數(shù)對(duì)在映射f下的象為實(shí)數(shù)z,記作. 對(duì)于任意的正整數(shù),映射由下表給出:








 
__________,使不等式成立的x的集合是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

湛江為建設(shè)國(guó)家衛(wèi)生城市,現(xiàn)計(jì)劃在相距20 km的赤坎區(qū)(記為A)霞山區(qū)(記為B)兩城區(qū)外以AB為直徑的半圓弧上選擇一點(diǎn)C建造垃圾處理廠(chǎng),其對(duì)市區(qū)的影響度與所選地 
點(diǎn)到市區(qū)的距離有關(guān),對(duì)赤坎區(qū)和霞山區(qū)的總影響度為兩市區(qū)的影響度之和,記C點(diǎn)到赤坎區(qū)的距離為x km,建在C處的垃圾處理廠(chǎng)對(duì)兩市區(qū)的總影響度為y.統(tǒng)計(jì)調(diào)查表明:垃圾處理廠(chǎng)對(duì)赤坎區(qū)的影響度與所選地點(diǎn)到赤坎區(qū)的距離的平方成反比,比例系數(shù)為4;對(duì)霞山區(qū)的影響度與所選地點(diǎn)到霞山區(qū)的距離的平方成反比,比例系數(shù)為k.當(dāng)垃圾處理廠(chǎng)建在的中點(diǎn)時(shí),對(duì)兩市區(qū)的總影響度為0.065.
(1)將y表示成x的函數(shù);
(2)討論(1)中函數(shù)的單調(diào)性,并判斷上是否存在一點(diǎn),使建在此處的垃圾處理廠(chǎng)對(duì)城A和城B的總影響度最?若存在,求出該點(diǎn)到赤坎區(qū)的距離;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某造紙廠(chǎng)擬建一座底面圖形為矩形且面積為162平方米的三級(jí)污水處理池,池的深度一定(平面圖如圖所示),如果池四周?chē)鷫ㄔ靻蝺r(jià)為400元/米,中間兩道隔墻建造單價(jià)為248元/米,池底建造單價(jià)為80元/平方米,水池所有墻的厚度忽略不計(jì).

(1)試設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總造價(jià)最低,并求出最低總造價(jià);
(2)若由于地形限制,該池的長(zhǎng)和寬都不能超過(guò)16米,試設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總造價(jià)最低,并求出最低總造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的圖像與函數(shù)的圖像所有交點(diǎn)的橫坐標(biāo)之和等于
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)是定義在R上的奇函數(shù),若對(duì)于任意給定的不等實(shí)數(shù),不等式
恒成立,則不等式的解集為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案