已知下列兩點(diǎn)坐標(biāo),求過其兩點(diǎn)直線的斜率和傾斜角。

                                              

           解:

                    

         ②

           解:

                    

         ③

           解:

                   


解析:

           解:

                    

         ②

           解:

                    

         ③

           解:

                    

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,點(diǎn)M(1,0)關(guān)于y軸的對(duì)稱點(diǎn)為N,直線l過點(diǎn)M交拋物線于A,B兩點(diǎn).
(Ⅰ)證明:直線NA,NB的斜率互為相反數(shù);
(Ⅱ)求△ANB面積的最小值;
(Ⅲ)當(dāng)點(diǎn)M的坐標(biāo)為(m,0)(m>0,且m≠1).根據(jù)(Ⅰ)(Ⅱ)推測(cè)并回答下列問題(不必說明理由):
①直線NA,NB的斜率是否互為相反數(shù)?
②△ANB面積的最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0).
(1)設(shè)橢圓的半焦距c=1,且a2,b2,c2成等差數(shù)列,求橢圓C的方程;
(2)對(duì)(1)中的橢圓C,直線y=x+1與C交于P、Q兩點(diǎn),求|PQ|的值;
(3)設(shè)B為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的短軸的一個(gè)端點(diǎn),F(xiàn)為橢圓C的一個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),記∠BFO=θ.當(dāng)橢圓C同時(shí)滿足下列兩個(gè)條件:①
π
6
≤θ≤
π
4
;②a2+b2=2a2b2.求橢圓長(zhǎng)軸的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0).
(1)設(shè)橢圓的半焦距c=1,且a2,b2,c2成等差數(shù)列,求橢圓C的方程;
(2)設(shè)(1)中的橢圓C與直線y=kx+1相交于P、Q兩點(diǎn),求
OP
OQ
的取值范圍;
(3)設(shè)A為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長(zhǎng)軸的一個(gè)端點(diǎn),B為橢圓短軸的一個(gè)端點(diǎn),F(xiàn)為橢圓C的一個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),記∠BFO=θ.當(dāng)橢圓C同 時(shí)滿足下列兩個(gè)條件:①
π
6
≤θ≤
π
4
;②O到直線AB的距離為
2
2
,求橢圓長(zhǎng)軸長(zhǎng)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列運(yùn)算不屬于我們所討論算法范疇的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案