若函數(shù)對于定義域中的任意實(shí)數(shù),都存在實(shí)常數(shù)滿足

,則稱關(guān)于點(diǎn)對稱.

(1)已知函數(shù)的圖象關(guān)于對稱,求實(shí)數(shù)的值;

(2)在(1)的結(jié)論下,已知 ,若對于任意的正實(shí)數(shù)和負(fù)實(shí)數(shù) ,恒有成立,求實(shí)數(shù)的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1-aa-x
,a∈R
.利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對于定義域中給定的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n∈N*),…如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無窮數(shù)列{xn}.
(1)求實(shí)數(shù)a的值;
(2)若x1=1,求(x1+1)(x2+1)…(xn+1)的值;
(3)設(shè)Tn=(x1+1)(x2+1)…(xn+1)(n∈N*),試問:是否存在n使得Tn+Tn+1+…+Tn+2006=2006成立,若存在,試確定n及相應(yīng)的x1的值;若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北黃岡聯(lián)考理)(14分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足

(1)判斷函數(shù)是否是集合M中的元素,并說明理由;

(2)若集合M中的元素具有下面的性質(zhì):“若的定義域?yàn)镈,則對于任意,都存在,使得等式成立”

試用這一性質(zhì)證明:方程只有一個(gè)實(shí)數(shù)根;

(3)設(shè)是方程的實(shí)數(shù)根,求證:對于定義域中的任意的,當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖南省長沙市一中高二上學(xué)期期末檢測數(shù)學(xué)文卷 題型:解答題

(本小題滿分13分)
設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足”.
(1)判斷函數(shù)是否是集合M中的元素,并說明理由;
(2)若集合M中的元素具有下面的性質(zhì):“若的定義域?yàn)镈,則對于任意,都存在,使得等式成立”,試用這一性質(zhì)證明:方程只有一個(gè)實(shí)數(shù)根;
(3)設(shè)是方程的實(shí)數(shù)根,求證:對于定義域中的任意的,當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖南省長沙市高二上學(xué)期期末檢測數(shù)學(xué)文卷 題型:解答題

(本小題滿分13分)

設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足”.

(1)判斷函數(shù)是否是集合M中的元素,并說明理由;

(2)若集合M中的元素具有下面的性質(zhì):“若的定義域?yàn)镈,則對于任意,都存在,使得等式成立”,試用這一性質(zhì)證明:方程只有一個(gè)實(shí)數(shù)根;

(3)設(shè)是方程的實(shí)數(shù)根,求證:對于定義域中的任意的,當(dāng)時(shí),

 

 

查看答案和解析>>

同步練習(xí)冊答案