已知
m
=(sinx+cosx,
3
cosx)
n
=(cosx-sinx,2sinx)
,函數(shù)f(x)=
m
n
,
(Ⅰ)求x∈[-
π
6
,
π
3
]
時,函數(shù)f(x)的取值范圍;
(Ⅱ)在△ABC中,a、b、c分別是角A、B、C、的對邊,且a=
3
,b+c=3,f(A)=1,求△ABC的面積.
(Ⅰ)f(x)=2sin(2x+
π
6
)
,
x∈[-
π
6
,
π
3
]

得到2x+
π
6
∈[-
π
6
,
6
]

所以f(x)∈[-1,2];
(Ⅱ)由f(x)=2sin(2x+
π
6
)

∵f(A)=1,2sin(2A+
π
6
)=1
,∴sin(2A+
π
6
)=
1
2
,
∵0<A<π,∴
π
6
<2A+
π
6
13π
6
,∴2A+
π
6
=
6
?A=
π
3

由余弦定理知cosA=
b2+c2-a2
2bc
,∴b2+c2-bc=3
又b+c=3,
聯(lián)立解得
b=2
c=1
b=1
c=2
,
S△ABC=
1
2
bcsinA=
3
2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(sinx+cosx,
3
cosx)
n
=(cosx-sinx,2sinx)
,函數(shù)f(x)=
m
n
,
(Ⅰ)求x∈[-
π
6
,
π
3
]
時,函數(shù)f(x)的取值范圍;
(Ⅱ)在△ABC中,a、b、c分別是角A、B、C、的對邊,且a=
3
,b+c=3,f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(sinx,cosx)(0<x<
π
2
),
n
=(1,-1)
,且
m
n
=
1
5
,
(1)求sin(x+
π
2
)+cos(x+
2
)
的值;
(2)求
sin2x+2sin2x
1-tanx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m=sinx+(0<x≤),n=(x<0),則m、n之間的大小關(guān)系是(    )

A.m>n          B.m<n                 C.m≥n              D.m≤n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m=sinx+(0<x≤),n=((x<0),則m、n之間的大小關(guān)系是 (    )

A.m>n                B.m<n               C.m≥n              D.m≤n

查看答案和解析>>

同步練習冊答案