已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸是x=1.給出下列四個結論:
①ac>0;
②b>0;
③b2-4ac>0;
④2a+b=0.
其中正確結論的個數(shù)是( 。
A、0B、1C、2D、3
考點:二次函數(shù)的性質
專題:函數(shù)的性質及應用
分析:由二次函數(shù)y=ax2+bx+c的圖象結合開口方向與y軸交點坐標及對稱軸是x=1逐一分析四個結論的真假,可得答案.
解答: 解:∵圖象與x軸有兩個交點,則方程有兩個不相等的實數(shù)根,b2-4ac>0,故③正確;
∵函數(shù)圖象開口向下,故a<0,有-
b
2a
>0,則b>0,故②正確;
對稱軸為x=1=-
b
2a
,則2a+b=0,故④正確;
又∵c>0,故ac<0,故①錯誤;
故選:D
點評:解答此題要注意函數(shù)與方程的關系,關鍵是掌握二次函數(shù)y=ax2+bx+c系數(shù)符號的確定.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=x3+ax2+bx+c,當x=1時f(x)的極大值為7,當x=3 時,f(x)有極小值,
(1)求a,b,c的值.
(2)函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在實數(shù)集R中定義一種運算“*”,?a,b∈R,a*b為唯一確定的實數(shù),且具有性質:
(1)對任意a∈R,a*0=a;
(2)對任意a,b∈R,a*b=ab+(a*0)+(b*0).
關于函數(shù)f(x)=(ex)•
1
ex
的性質,有如下說法:①函數(shù)f(x)的最小值為3;②函數(shù)f(x)為偶函數(shù);③函數(shù)f(x)的單調遞增區(qū)間為(-∞,0].
其中所有正確說法的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果函數(shù)y=logax在區(qū)間[2,+∞﹚上恒有y>1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=sin(wx+Φ)(w>0)的部分圖象如圖,則w=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設sin2α=-sinα,α∈(
π
2
,π),則tanα的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的圓心在坐標原點O,且與直線l1:x-y-2
2
=0相切.
(1)求直線l2:4x-3y+5=0被圓C所截得的弦AB的長;
(2)若與直線l1垂直的直線與圓C交于不同的兩點P,Q,且以PQ為直徑的圓過原點,求直線的縱截距;
(3)過點G(1,3)作兩條與圓C相切的直線,切點分別為M,N,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M是y=
1
4
x2
上一點,F(xiàn)為拋物線的焦點,A在C:(x-1)2+(y-4)2=1上,則|MA|+|MF|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,設S為△ABC的面積,且S=
3
4
(a2+b2-c2).
(1)求角C的大;
(2)當cosA+cosB取得最大值時,判斷△ABC的形狀.

查看答案和解析>>

同步練習冊答案