15.已知復數(shù)$z=\frac{{{{(1+i)}^2}+2(5-i)}}{3+i}$,
(1)求|z|;
(2)若z(z+a)=b+i,求實數(shù)a,b的值.

分析 (1)化簡復數(shù)為a+bi的形式,然后求解復數(shù)的模.
(2)利用復數(shù)的代數(shù)形式的混合運算,結合復數(shù)相等,列出方程求解a,b即可.

解答 解:(1)$z=\frac{2i+10-2i}{3+i}=\frac{10}{3+i}=\frac{10(3-i)}{10}=3-i$;$|z|=\sqrt{10}$
(2)(3-i)(3-i+a)=(3-i)2+(3-i)a=8+3a-(a+6)i=b+i,
可得$\left\{\begin{array}{l}8+3a=b\\-(a+6)=1\end{array}\right.⇒\left\{\begin{array}{l}a=-7\\ b=-13\end{array}\right.$.

點評 本題考查復數(shù)的代數(shù)形式的混合運算,復數(shù)相等條件的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知A,B是單位圓O上的動點,且A,B分別在第一,二象限.C是圓與x軸正半軸的交點,△AOB為正三角形,記∠AOC=α
(1)若A點的橫坐標為$\frac{3}{5}$,求tan(540°-α)的值;
(2)若tan(α+60°)=-$\frac{3}{4}$,求B、C兩點之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設奇函數(shù)f(x)在(-∞,0)上為減函數(shù),且f(2)=0,則$\frac{{f(x)-3f({-x})}}{2x}>0$的解集為( 。
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞.-2)∪(2.+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.計算:
(1)求值:$\frac{lo{g}_{5}\sqrt{2}•lo{g}_{7}9}{lo{g}_{5}\frac{1}{3}•lo{g}_{7}\root{3}{4}}$
(2)2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.用min{a,b}表示a,b兩數(shù)中的最小值,若函數(shù)f(x)=min{|x-3|,|x+1|},則不等式f(x)<f(0)的解集是(-2,0)∪(2,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=x-|x-1|,$g(x)={(\frac{1}{2})^{x-1}}$.
(Ⅰ) 在所給坐標系中同時畫出函數(shù)y=f(x)和y=g(x)的圖象;
(Ⅱ) 根據(jù)(I)中圖象寫出不等式g(x)≥f(x)的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.任取x∈[0,π],則使$sinx>\frac{1}{2}$的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)$f(x)=a+\frac{2}{{{2^x}-1}}$(a∈R);
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)在區(qū)間(0,+∞)的單調(diào)性,用定義給出證明;
(3)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù),若存在求出a,不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若方程lgx=3-x的根x0∈(n,n+1),n∈Z,則n=2.

查看答案和解析>>

同步練習冊答案