給定兩個長度為1的平面向量,它們的夾角為120°,如圖所示,點C在以O為圓心的圓弧上變動.若(x,y∈R),則x-y的最大值是( )

A.-1
B.0
C.2
D.1
【答案】分析:本題是向量的坐標表示的應用,結(jié)合圖形,利用三角函數(shù)的性質(zhì),即可求出結(jié)果.
解答:解:建立如圖所示的坐標系,
則A(1,0),B(cos120°,sin120°),
即B(-
設∠AOC=α,則
=(x,0)+(-


∴x-y=cosα-=
∵0°≤α≤120°,∴-60°≤α-60°≤60°.
∴-≤sin(α-60°)≤
∴x-y有最大值1,當α=0°時取最大值1.
故選D.
點評:本題考查向量知識的運用,考查三角函數(shù)的性質(zhì),確定x,y的關(guān)系式是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)給定兩個長度為1的平面向量
OA
OB
,它們的夾角為120°.如圖所示,點C在以O為圓心,以1半徑的圓弧AB上變動.若
OC
=x
OA
+y
OB
,其中x,y∈R,則x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)給定兩個長度為1的平面向量
OA
OB
,它們的夾角為90°,如圖所示,點C在以O為圓心的圓弧AB上運動,若
CO
=x
OA
+y
OB
,其中x,y∈R,則x+y的最大值是(  )
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)給定兩個長度為1的平面向量
OA
OB
,它們的夾角為120°.如圖所示,點C在以O為圓心的圓弧AB上變動.若
OC
=x
OA
+y
OB
,其中x,y∈R.
(1)若∠AOC=30°,求x,y的值;
(2)求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定兩個長度為1的平面向量
OA
OB
,它們的夾角為120°.
(1)求|
OA
+
OB
|;
(2)如圖所示,點C在以O為圓心的圓弧
AB
上變動.若
OC
=x
OA
+y
OB
,其中x,y∈R,求x+y的最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng) 如圖,給定兩個長度為1的平面向量
OA
OB
,它們的夾角為
3
,點C是以O為圓心的圓弧
AB
上的一個動點,且
OC
=x
OA
+y
OB
(x,y∈
.
R-

(Ⅰ)設∠AOC=θ,寫出x,y關(guān)于θ的函數(shù)解析式并求定義域;
(Ⅱ)求x+y的取值范圍.

查看答案和解析>>

同步練習冊答案