分析 (1)根據(jù)$x∈({-\frac{π}{6},0}]$,求出$f(x)=sin({2x+\frac{π}{3}})$的范圍,利用基本不等式求解.
(2)利用$a∈({-\frac{π}{2},0}),f({\frac{a}{2}+\frac{π}{3}})=\frac{{\sqrt{5}}}{5}$,求先求解出sinα和cosα,在求解sin2α和cos2α,可得f(a)的值
解答 解:(1)函數(shù)$f(x)=sin({2x+\frac{π}{3}})$.
∵$x∈({-\frac{π}{6},0}]$,
∴$2x+\frac{π}{3}∈({0,\frac{π}{3}}]$,
∴$f(x)=sin({2x+\frac{π}{3}})∈({0,\frac{{\sqrt{3}}}{2}}]$
∴$4f(x)+\frac{1}{f(x)}≥2\sqrt{4}=4$,
當(dāng)且僅當(dāng)$4f(x)=\frac{1}{f(x)}$,即$f(x)=\frac{1}{2}$,即$2x+\frac{π}{3}=\frac{π}{6},x=-\frac{π}{12}$時(shí),等號(hào)成立.
故當(dāng)$x=-\frac{π}{12}$時(shí),則$4f(x)+\frac{1}{f(x)}$的最小值為4.
(2)$a∈({-\frac{π}{2},0}),f({\frac{a}{2}+\frac{π}{3}})=\frac{{\sqrt{5}}}{5}$,即sin(a+$\frac{2π}{3}$$+\frac{π}{3}$)=$\frac{\sqrt{5}}{5}$,
∴sinα=$-\frac{\sqrt{5}}{5}$.
則cosα=±$\sqrt{1-si{n}^{2}α}=±\frac{2\sqrt{5}}{5}$
∵$α∈(-\frac{π}{2},0)$,
∴cosα=$\frac{2\sqrt{5}}{5}$.
sin2α=2sinαcosα=$-\frac{4}{5}$,cos2a=1-2sin2a=$\frac{3}{5}$.
∴$f(α)=\frac{1}{2}sin2α+\frac{{\sqrt{3}}}{2}cos2α=\frac{{3\sqrt{3}-4}}{10}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)與基本不等式的綜合運(yùn)用,二倍角的化簡(jiǎn)和計(jì)算能力.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 0 | C. | 2 | D. | 2015 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({0,\frac{1}{2}})$ | B. | $({\frac{1}{2},1})$ | C. | (1,2) | D. | (2,e) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com