設(shè)函數(shù)f(x)=(1+x)2-ln(1+x)2+2.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若不等式f(x)>m在x∈[
1
e
-1,e-1]
恒成立,求實數(shù)m的取值范圍.
(3)若對任意的a∈(1,2),總存在x0∈[1,2],使不等式f(x0)>a+
9
4a
+m
成立,求實數(shù)m的取值范圍.
(1)函數(shù)的定義域為{x|x≠-1}…(1分)
f′(x)=2(1+x)-
2
x+1
=
2x(x+2)
x+1
…(2分)
由f′(x)>0得-2<x<-1或x>0
故函數(shù)f(x)的單調(diào)增區(qū)間為(-2,-1)和(0,+∞)
(2)∵當x∈[
1
e
-1,0]
時f′(x)<0…(4分)
當x∈[0,e-1]時f′(x)>0
∴f(x)在[
1
e
-1,0]
上單調(diào)遞減,在[0,e-1]上單調(diào)遞減.…(6分)
f(x)min=f(0)=1-0+2=3
∴m<3…(8分)
(3)設(shè)g(a)=a+
9
4a
+m,g′(a)=1-
9
4a2
=0?a=
3
2

y=g(a)在a∈(1,
3
2
)
上單減,在a∈(
3
2
,2)
上單增…(10分)
由(1)知f(x)在[1,2]上單增,
∴fmax=f(2)=11-ln9…(12分)
g(1)=
13
4
+m

g(2)=
25
8
+m

g(1)>g(2)
11-ln9>
13
4
+m

m<
31
4
-ln9
…(14分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ax3-3x+1(x∈R),若對于任意的x∈[-1,1]都有f(x)≥0成立,則實數(shù)a的值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•安徽)設(shè)函數(shù)f(x)=ax-(1+a2)x2,其中a>0,區(qū)間I={x|f(x)>0}
(Ⅰ)求I的長度(注:區(qū)間(a,β)的長度定義為β-α);
(Ⅱ)給定常數(shù)k∈(0,1),當1-k≤a≤1+k時,求I長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•浦東新區(qū)二模)記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
(1)判斷函數(shù)f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)設(shè)函數(shù)f(x)=log2(1-2x),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素,
例如f(x)=-x+1,對任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)設(shè)函數(shù)f(x)=log2(1-2x),判斷f(x)是否是M的元素,并求f(x)的反函數(shù)f-1(x);
(2)f(x)=
axx+b
∈M
(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)設(shè)函數(shù)f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
(2)設(shè)正數(shù)P1,P2,P3,…P2n滿足P1+P2+…P2n=1,求證:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.

查看答案和解析>>

同步練習冊答案