已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=S9>0,則S12=
 
,使得Sn取最大值時(shí)的自然數(shù)n的值為
 
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由已知條件推導(dǎo)出6a1+33d=0,從而得到S12=2(a1+33d)=0.a1=-
11
2
d
,Sn=
d
2
(n-6)2-18d
,由此能求出使得Sn取最大值時(shí)的自然數(shù)n的值為6.
解答: 解:∵已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=S9>0,
∴3a1+
3×2
2
d
=9a1+
9×8
2
d
,
∴6a1+33d=0,
∴S12=12a1+
12×11
2
d
=2(6a1+33d)=0.
由6a1+33d=0,得a1=-
11
2
d
,
∴Sn=na1+
n(n-1)
2
d

=-
11
2
dn
+
d
2
n2
-
d
2
n

=
d
2
(n2-12n)
=
d
2
(n-6)2-18d
,
∴使得Sn取最大值時(shí)的自然數(shù)n的值為6.
故答案為:0,6.
點(diǎn)評(píng):本題考查等差數(shù)列的前12項(xiàng)和的求法,考查等差數(shù)列的前n項(xiàng)和取得最大值時(shí)的n的求法,解題時(shí)要認(rèn)真審題,注意配方法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校為了解學(xué)生的視力情況,隨機(jī)抽查了一部分學(xué)生視力,將調(diào)查結(jié)果分組,分組區(qū)間為(3.9,4.2],(4.2,4.5],…,(5.1,5.4].經(jīng)過(guò)數(shù)據(jù)處理,得到頻率分布表:
分組 頻數(shù) 頻率
(3.9,4.2] 1 0.05
(4.2,4.5] 5 0.25
(4.5,4.8] 9 x
(4.8,5.1] y z
(5.1,5.4] 1 0.05
合計(jì) n 1.00
(Ⅰ)求頻率分布表中未知量n、x、y、z的值;
(Ⅱ)從樣本中隨機(jī)抽取2人,其中視力超過(guò)4.8的人數(shù)記為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“行通濟(jì)”是廣東佛山一帶在元宵節(jié)期間舉行的游玩祈;顒(dòng),每到這一天,家家戶(hù)戶(hù)都會(huì)扶老攜幼,自清晨到夜幕,舉著風(fēng)車(chē)、搖著風(fēng)鈴、拎著生菜浩浩蕩蕩地由北到南走過(guò)通濟(jì)橋,祈求來(lái)年平平安安、順順利利.為了了解不同年齡層次的人對(duì)這一傳統(tǒng)習(xí)俗的參與度,現(xiàn)隨機(jī)抽取年齡在20~80歲之間的60人,并按年齡層次[20.30),[30,40),[40,50),[50,60),[60,70),[70,80)繪制頻率分布直方圖如圖所示,其中參與了2014年“行通濟(jì)”活動(dòng)的人數(shù)如下表.若規(guī)定年齡分布在[20,60)歲的為“中青年人”,60歲以上(含60歲)為“老年人”.
年齡(歲) 參與人數(shù)
[20,30) 3
[30,40) 2
[40,50) 3
[50,60) 4
[60,70) 5
[70,80] 3
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷能否有99%的把握認(rèn)為“老年人”比“中青年人”更認(rèn)同“行通濟(jì)”這一民俗?
“老年人”人數(shù) “中青年人”人數(shù) 合計(jì)
有參與
 
 
 
沒(méi)有參與
 
 
 
合計(jì)
 
 
 
(2)用樣本估計(jì)總體,從全佛山市民中隨機(jī)抽取3人,記抽到“老年人”的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
參考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
下面的臨界值表供參考:
P(K2>k) 0.10 0.05 0.025 0.010
k 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|
x-2
x+5
<0},B={x|x2-2x-3≥0,x∈R},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=
1
2
x2+2x+1與直線y=x+2垂直的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿(mǎn)足約束條件
x≥1
y≥
1
2
x
2x+y≤10
,向量
a
=(y-2x,m),
b
=(1,-1),且
a
b
,則m的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x∈Z且-10≤x≤-1},B={x|x∈Z且|3x+2|≤5},則A∪B中元素的個(gè)數(shù)是
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一次函數(shù)y=-3x+2的值域?yàn)?div id="zbl2o3w" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x<-3,則下列關(guān)于函數(shù)f(x)=x+
4
x+3
的說(shuō)法正確的是( 。
A、有最大值-7
B、有最小值-7
C、有最大值4
D、有最小值-4

查看答案和解析>>

同步練習(xí)冊(cè)答案