“a=1”是“直線ax+y-1=0與直線ax-y+1=0垂直”的


  1. A.
    充分不必要條件
  2. B.
    必要不充分條件
  3. C.
    充要條件
  4. D.
    既不充分也不必要條件
A
分析:當(dāng)a=1時(shí)兩直線的斜率都存在,故只要看是否滿足k1•k2=-1即可.利用直線的垂直求出a的值,然后判斷充要條件即可.
解答:當(dāng)a=1時(shí)直線ax+y-1=0的斜率是-1,直線ax-y+1=0的斜率是1,
滿足k1•k2=-1
∴a=1時(shí)直線ax+y-1=0與直線ax-y+1=0垂直,
直線ax+y-1=0與直線ax-y+1=0垂直,則-a•a=-1,解得a=±1,
“a=1”是“直線ax+y-1=0與直線ax-y+1=0垂直”的充分不必要條件.
故選A.
點(diǎn)評(píng):本題通過(guò)邏輯來(lái)考查兩直線垂直的判定,必要條件、充分條件與充要條件的判斷,考查基本知識(shí)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題中:
①設(shè)經(jīng)x,y∈R,則“x≥2且y≥2”是“x2+y2≥4”的必要不充分條件;
②命題“所有能被2整除的整數(shù)都是偶數(shù)”的否定是:“存在一個(gè)能被2整除的整數(shù)不是偶數(shù)”;
③已知命題“如果|a|≤1,那么關(guān)于x的不等式(a2-4)x2+(a+2)x-1≥0的解集為∅”,它的逆命題是假命題;
④“m=1”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的充要條件;
則所有正確命題的序號(hào)有
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌平區(qū)二模)“a=1”是“直線x+y=0和直線x-a2y=0垂直”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a=1是直線(3a+2)x+(1-4a)y+8=0和(5a-2)x+(a+4)y-7=0互相垂直的( 。
A、充分不必要條件B、必要不充分條件C、充要條件D、既不充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下列四個(gè)命題中:
①設(shè)經(jīng)x,y∈R,則“x≥2且y≥2”是“x2+y2≥4”的必要不充分條件;
②命題“所有能被2整除的整數(shù)都是偶數(shù)”的否定是:“存在一個(gè)能被2整除的整數(shù)不是偶數(shù)”;
③已知命題“如果|a|≤1,那么關(guān)于x的不等式(a2-4)x2+(a+2)x-1≥0的解集為∅”,它的逆命題是假命題;
④“m=1”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的充要條件;
則所有正確命題的序號(hào)有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省荊門(mén)市高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

下列四個(gè)命題中:
①設(shè)經(jīng)x,y∈R,則“x≥2且y≥2”是“x2+y2≥4”的必要不充分條件;
②命題“所有能被2整除的整數(shù)都是偶數(shù)”的否定是:“存在一個(gè)能被2整除的整數(shù)不是偶數(shù)”;
③已知命題“如果|a|≤1,那么關(guān)于x的不等式(a2-4)x2+(a+2)x-1≥0的解集為∅”,它的逆命題是假命題;
④“m=1”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的充要條件;
則所有正確命題的序號(hào)有   

查看答案和解析>>

同步練習(xí)冊(cè)答案