p2 |
4 |
p2 |
4 |
FA1 |
FB1 |
FA1 |
FB1 |
p |
2 |
p |
2 |
p |
2 |
p |
2 |
p2 |
4 |
p |
2 |
|
k |
2p |
kp |
2 |
y12 |
2p |
y22 |
2p |
p2 |
4 |
p2 |
4 |
p |
2 |
p |
2 |
p |
2 |
p |
2 |
FA1 |
FB1 |
FA1 |
FB1 |
FA1 |
FB1 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
10 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
d |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市長(zhǎng)寧區(qū)2012屆高三4月教學(xué)質(zhì)量檢測(cè)(二模)數(shù)學(xué)理科試題 題型:044
設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過F且垂直于x軸的直線與拋物線交于P1,P2兩點(diǎn),已知|P1P2|=8.
(1)求拋物線C的方程;
(2)設(shè)m>0,過點(diǎn)M(m,0)作方向向量為=(1,)的直線與拋物線C相交于A,B兩點(diǎn),求使∠AFB為鈍角時(shí)實(shí)數(shù)m的取值范圍;
(3)①對(duì)給定的定點(diǎn)M(3,0),過M作直線與拋物線C相交于A,B兩點(diǎn),問是否存在一條垂直于x軸的直線與以線段AB為直徑的圓始終相切?若存在,請(qǐng)求出這條直線;若不存在,請(qǐng)說明理由.
②對(duì)M(m,0)(m>0),過M作直線與拋物線C相交于A,B兩點(diǎn),問是否存在一條垂直于x軸的直線與以線段AB為直徑的圓始終相切?(只要求寫出結(jié)論,不需用證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三4月教學(xué)質(zhì)量檢測(cè)(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分其中①6分、②2分。
設(shè)拋物線的焦點(diǎn)為,過且垂直于軸的直線與拋物線交于兩點(diǎn),已知.
(1)求拋物線的方程;
(2)設(shè),過點(diǎn)作方向向量為的直線與拋物線相交于兩點(diǎn),求使為鈍角時(shí)實(shí)數(shù)的取值范圍;
(3)①對(duì)給定的定點(diǎn),過作直線與拋物線相交于兩點(diǎn),問是否存在一條垂直于軸的直線與以線段為直徑的圓始終相切?若存在,請(qǐng)求出這條直線;若不存在,請(qǐng)說明理由。
②對(duì),過作直線與拋物線相交于兩點(diǎn),問是否存在一條垂直于軸的直線與以線段為直徑的圓始終相切?(只要求寫出結(jié)論,不需用證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年上海市長(zhǎng)寧區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com