點(diǎn)P(2,3)關(guān)于直線x+y+1=0的對(duì)稱點(diǎn)的坐標(biāo)是( )
A.(-3,-2)
B.(-4,-3)
C.(-2,-3)
D.(-3,-4)
【答案】分析:設(shè)出對(duì)稱點(diǎn)的坐標(biāo),利用斜率乘積為-1,對(duì)稱的兩個(gè)點(diǎn)的中點(diǎn)在對(duì)稱軸上,列出方程組,求出對(duì)稱點(diǎn)的坐標(biāo)即可.
解答:解:設(shè)對(duì)稱點(diǎn)的坐標(biāo)為(a,b),由題意可知,解得a=-4,b=-3,
所以點(diǎn)(2,3)關(guān)于直線 x+y+1=0的對(duì)稱點(diǎn)的坐標(biāo)是(-4,-3).
故選B.
點(diǎn)評(píng):本題考查直線與點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的求法,注意對(duì)稱知識(shí)的應(yīng)用,垂直與平分是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線

于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

(3)當(dāng)P不在軸上時(shí),在曲線上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱,若存在,

求出的斜率范圍,若不存在,說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案