如圖,橢圓的中心為原點(diǎn)0,離心率e=,一條準(zhǔn)線的方程是x=2
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動點(diǎn)P滿足:=+2,其中M、N是橢圓上的點(diǎn),直線OM與ON的斜率之積為-,
問:是否存在定點(diǎn)F,使得|PF|與點(diǎn)P到直線l:x=2的距離之比為定值;若存在,求F的坐標(biāo),若不存在,說明理由.

【答案】分析:(Ⅰ) 由題意得 =,==2,解出a、b 的值,即得橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)動點(diǎn)P(x,y),M(x1,y1 )、N(x2,y2 ). 由向量間的關(guān)系得到 x=x1+2x2,y=y1+2y2,據(jù)M、N是橢圓上的點(diǎn)可得 x2+2y2=20+4(x1x2+2y1y2 ).再根據(jù)直線OM與ON的斜率之積為-,得到點(diǎn)P是橢圓 x2+2y2=20 上的點(diǎn),根據(jù)橢圓的第二定義,存在點(diǎn)F(,0),滿足條件.
解答:解:(Ⅰ) 由題意得 ===2,∴a=2,b=,
故橢圓的標(biāo)準(zhǔn)方程  +=1.
(Ⅱ)設(shè)動點(diǎn)P(x,y),M(x1,y1 )、N(x2,y2 ).∵動點(diǎn)P滿足:=+2,
∴(x,y)=(x1+2x2,y1+2y2  ),∴x=x1+2x2,y=y1+2y2,
∵M(jìn)、N是橢圓上的點(diǎn),∴x12+2y12-4=0,x22+2y22-4=0.
∴x2+2y2=(x1+2x22+2 (y1+2y22=(x12+2y12 )+4(x22+2y22 )+4(x1x2+2y1y2 )
=4+4×4+4(x1x2+2y1y2 )=20+4(x1x2+2y1y2 ).
∵直線OM與ON的斜率之積為-,∴=-,∴x2+2y2=20,
故點(diǎn)P是橢圓  =1 上的點(diǎn),焦點(diǎn)F(,0),準(zhǔn)線l:x=2,離心率為,
根據(jù)橢圓的第二定義,|PF|與點(diǎn)P到直線l:x=2的距離之比為定值,
故存在點(diǎn)F(,0),滿足|PF|與點(diǎn)P到直線l:x=2的距離之比為定值.
點(diǎn)評:本題考查用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程,兩個向量坐標(biāo)形式的運(yùn)算,以及橢圓的第二定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓的中心為原點(diǎn)0,離心率e=
2
2
,一條準(zhǔn)線的方程是x=2
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動點(diǎn)P滿足:
OP
=
OM
+2
ON
,其中M、N是橢圓上的點(diǎn),直線OM與ON的斜率之積為-
1
2
,
問:是否存在定點(diǎn)F,使得|PF|與點(diǎn)P到直線l:x=2
10
的距離之比為定值;若存在,求F的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓的中心為原點(diǎn)O,離心率e=
2
2
,一條準(zhǔn)線的方程為x=2
2

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)動點(diǎn)P滿足
OP
=
OM
+2
ON
,其中M,N是橢圓上的點(diǎn).直線OM與ON的斜率之積為-
1
2

問:是否存在兩個定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值.若存在,求F1,F(xiàn)2的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓的中心為原點(diǎn)O,已知右準(zhǔn)線l的方程為x=4,右焦點(diǎn)F到它的距離為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)圓C經(jīng)過點(diǎn)F,且被直線l截得的弦長為4,求使OC長最小時(shí)圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•重慶)如圖,橢圓的中心為原點(diǎn)O,長軸在x軸上,離心率e=
2
2
,過左焦點(diǎn)F1作x軸的垂線交橢圓于A、A′兩點(diǎn),|AA′|=4.
(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)取垂直于x軸的直線與橢圓相交于不同的兩點(diǎn)P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.若PQ⊥P'Q,求圓Q的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案